• Title/Summary/Keyword: perturbed differential equation

Search Result 37, Processing Time 0.086 seconds

HYBRID FIXED POINT THEORY AND EXISTENCE OF EXTREMAL SOLUTIONS FOR PERTURBED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Dhage, Bapurao C.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.315-330
    • /
    • 2007
  • In this paper, some hybrid fixed point theorems are proved which are further applied to first and second order neutral functional differential equations for proving the existence results for the extremal solutions under the mixed Lipschitz, compactness and monotonic conditions.

ON STABILITY AND BIFURCATION OF PERIODIC SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS

  • EL-SHEIKH M. M. A.;EL-MAHROUF S. A. A.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.281-295
    • /
    • 2005
  • The purpose of this paper is to study a class of delay differential equations with two delays. First, we consider the existence of periodic solutions for some delay differential equations. Second, we investigate the local stability of the zero solution of the equation by analyzing the corresponding characteristic equation of the linearized equation. The exponential stability of a perturbed delay differential system with a bounded lag is studied. Finally, by choosing one of the delays as a bifurcation parameter, we show that the equation exhibits Hopf and saddle-node bifurcations.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

The Possibility of Neural Network Approach to Solve Singular Perturbed Problems

  • Kim, Jee-Hyun;Cho, Young-Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • Recentlly neural network approach for solving a singular perturbed integro-differential boundary value problem have been researched. Especially the model of the feed-forward neural network to be trained by the back propagation algorithm with various learning algorithms were theoretically substantiated, and neural network models such as deep learning, transfer learning, federated learning are very rapidly evolving. The purpose of this paper is to study the approaching method for developing a neural network model with high accuracy and speed for solving singular perturbed problem along with asymptotic methods. In this paper, we propose a method that the simulation for the difference between result value of singular perturbed problem and unperturbed problem by using neural network approach equation. Also, we showed the efficiency of the neural network approach. As a result, the contribution of this paper is to show the possibility of simple neural network approach for singular perturbed problem solution efficiently.

ON THE EXISTENCE AND BEHAVIOR OF SOLUTIONS FOR PERTURBED NONLINEAR DIFFERENTIAL EQUATIONS

  • Jin Gyo Jeong;Ki Yeon Shin
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.655-664
    • /
    • 1997
  • The existence and behavior of a bounded solution for a perturbed nonlinear differential equation of the type $$ (DE) x'(t) + Ax(t) \ni G(x(t)), t \in [0, \infty) $$ is considered. First, we consider the existence of a bounded solution with more simple assumptions using the concept of "the method of lines". Then we devote to study its behavior using recent results of almost non-expansive curve which is developed by Djafari Rouhani.i Rouhani.

  • PDF

A ROBUST NUMERICAL TECHNIQUE FOR SOLVING NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

  • Cakir, Firat;Cakir, Musa;Cakir, Hayriye Guckir
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.939-955
    • /
    • 2022
  • In this paper, we study a first-order non-linear singularly perturbed Volterra integro-differential equation (SPVIDE). We discretize the problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh. The scheme is constructed by the method of integral identities with exponential basis functions and integral terms are handled with interpolating quadrature rules with remainder terms. An effective quasi-linearization technique is employed for the algorithm. We establish the error estimates and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N-1) uniformly convergent, where N is the mesh parameter. The numerical results on a couple of examples are also provided to confirm the theoretical analysis.

AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED THIRD ORDER CONVECTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.135-154
    • /
    • 2018
  • In this paper, an almost second order overlapping Schwarz method for singularly perturbed third order convection-diffusion type problem is constructed. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the combination of classical finite difference scheme and central finite difference scheme on a uniform mesh while on the non-layer region we use the midpoint difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. We proved that, when appropriate subdomains are used, the method produces convergence of second order. Furthermore, it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme are it reduce iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.

Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method (웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.