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A ROBUST NUMERICAL TECHNIQUE FOR SOLVING

NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL

EQUATIONS WITH BOUNDARY LAYER

Firat Cakir, Musa Cakir, and Hayriye Guckir Cakir

Abstract. In this paper, we study a first-order non-linear singularly per-
turbed Volterra integro-differential equation (SPVIDE). We discretize the

problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh.

The scheme is constructed by the method of integral identities with expo-
nential basis functions and integral terms are handled with interpolating

quadrature rules with remainder terms. An effective quasi-linearization
technique is employed for the algorithm. We establish the error estimates

and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N−1)

uniformly convergent, where N is the mesh parameter. The numerical re-
sults on a couple of examples are also provided to confirm the theoretical

analysis.

1. Introduction

In this present paper, we consider the following singularly perturbed non-
linear Volterra integro-differential equation (SPVIDE)

(1.1) Lu := εu′ + a(x)u+ λ

∫ x

0

K
(
x, t, u(t)

)
dt = f(x), x ∈ I = [0, `],

subject to

(1.2) u(0) = A,

where 0 < ε � 1 is a small perturbation parameter. We assume a(x) (x ∈ I),
f(x) (x ∈ I) and K(x, t, u) ((x, t, u) ∈ I × I × R) are sufficiently smooth
functions satisfying

a(x) ≥ α > 0, x ∈ I,∣∣∣∂K
∂u

∣∣∣ ≤ K̄ ≤ ∞, (x, t, u) ∈ I × I × R.

The initial layer for the solution u(x) occurs at x = 0 for small values of ε.
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Singularly perturbed differential equations, which have the highest order
derivative term multiplied with a small positive number ε, possess solutions
with interior or boundary layers. Boundary layers are regions where rapid
changes occur which makes solving such problems more challenging. Since
standard schemes fail to give the accurate results for problems with boundary
layer for small ε values, many numerical methods have been developed in the
literature to solve singularly perturbed differential equations ([7, 9, 10, 14, 19,
20,22,25–28,30]).

Singularly perturbed Volterra integro-differential equations (SPVIDEs) have
been of interest to many researchers since these equations are used to model
various science problems in engineering, physics, biology and chemistry ([3, 4,
8, 12, 13, 23, 24]). While a problem of nonlinear SPVIDE modelling the elon-
gation ratio of filament is studied and the qualitative properties of the so-
lution is discussed under some physically interesting assumptions in [23], a
specific singularly perturbed integro-differential equation which describes the
process of filament stretching is studied in [2]. A broad review on the liter-
ature of the SPVIDEs can be found in [17]. Numerical solutions of singu-
larly pertur-bed integro differential equations have been also widely studied by
many re-searchers. In [15] and [16], implicit Runge-Kutta methods for singu-
larly per-turbed integro-differential and integro-differential-algebraic equations
are ana-lyzed. An exponential finite difference method with piecewise-uniform
meshes is applied for the inner and the outer layers and a type of implicit
Runge-Kutta method is performed for the outer layer of SPVIDEs in [29]. A
finite Legendre expansion is constructed to solve singularly perturbed integral
equations, first order Volterra integro-differential equations and Volterra delay
integro-differen-tial equations in [18]. In [11], tension spline collocation meth-
ods are utilized to derive the numerical discretization of singularly perturbed
Volterra integro-differential equations and Volterra integral equations. In [31],
the authors present different types of exponential schemes to solve SPVIDEs
and the stability analysis of the schemes is examined. Fitted difference schemes
are also proven to provide accurate results in the solution process of different
types of singularly perturbed problems. In [32], a uniform convergent differ-
ence scheme is construc-ted on a graded mesh to solve non-linear SPVIDEs. A
finite difference scheme is developed to solve a non-linear first order SPVIDE
with delay in [34]. Recently, a finite difference scheme is utilized to exam-
ine the numerical solutions of a non-linear VIDE in [6]. In [33], a non-linear
SPVIDE is discretized by uniform convergent implicit finite difference scheme
on an arbitrary non-uniform mesh and a priori and a posteriori estimates are
established.

In this present work, we mainly construct a uniform convergent finite
difference scheme for the problem (1.1)-(1.2) on a Bakhvalov-Shishkin mesh.
Bakhvalov-Shishkin mesh is a mixed version of the Shishkin mesh and
Bakhvalov mesh which are known to yield accurate results for singularly per-
turbed problems with boundary layers. In [21], the author showed that an
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upwind difference scheme on Bakhvalov-Shishkin mesh for a linear convection-
diffusion problem provides more accurate results than upwinding on a standard
Shishkin mesh. Further, a finite difference scheme on Bakhvalov-Shishkin mesh
is utilized to solve singularly perturbed boundary value problem with a bound-
ary layer in [5].

We organize the rest of the paper in the following order. In Section 2, the
stability result of the continuous problem (1.1)-(1.2) is established. In Section
3, we introduce the Bakhvalov-Shishkin mesh points according to the boundary
layer conditions of the problem (1.1)-(1.2) and derive a finite difference scheme
through the method of integral identities with exponential basis functions and
interpolating quadrature rules with remainder terms. In Section 4, we establish
the error estimates and show that the scheme demonstrates O(N−1) uniform
convergence with respect to the perturbation parameter. The numerical results
supporting the analytical results are presented in Section 5.

2. Preliminaries

In the following lemma, we study a priori estimates for the asymptotic be-
havior of the exact solution to the problem (1.1)-(1.2) which is later used in
the error analysis.

Lemma 2.1. Let a, f ∈ C(I) and K ∈ C(I × I × R). The solution of the
problem (1.1)-(1.2) satisfies

(2.1) ‖u‖∞ ≤ C.

In addition, if a, f ∈ C1(I) and K ∈ C1(I × I × R) with

(2.2)
∣∣∣ ∂
∂x
K(x, t, u)

∣∣∣ ≤ K̄1 <∞,

then the solution u(x) satisfies

(2.3) |u′(x)| ≤ C
(

1 +
1

ε
e−

αx
ε

)
, x ∈ I.

Proof. To establish the first estimate given in (2.1) we first linearize the function
K(x, t, u) by the Mean Value Theorem for functions with several variables

K(x, t, u(t)) = K(x, t, 0) +
∂

∂u
K(x, t, ηu)u(t), 0 < η < 1.(2.4)

Inserting (2.4) in (1.1) and rearranging (1.1) we have

(2.5) εu′ + a(x)u = F (x),

where

(2.6) F (x) = f(x)− λ
∫ x

0

K(x, t, 0)dt− λ
∫ x

0

∂K

∂u
(x, t, ηu)u(t)dt.
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Solving the equation (2.5) with u(0) = A yields

u(x) = Ae
−

1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

F (ξ)e
−

1

ε

∫ x

ξ

a(s)ds
dξ,

and further we calculate

|u(x)| ≤ |A|e
−

1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|F (ξ)|e
−

1

ε

∫ x

ξ

a(s)ds
dξ.

Since we have a(x) ≥ α > 0, it follows

(2.7)
|u(x)| ≤ |A|e

−
1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|F (ξ)|e
−

1

ε

∫ x

ξ

αds
dξ

= |A|e
−
αx

ε +
1

ε

∫ x

0

|F (ξ)|e
−
α(x− ξ)

ε dξ.

Further, letting M̄ = max
I×I
|K(x, t, 0)| and by the definition of F (x) in (2.6), we

get

(2.8) |F (x)| ≤ ‖f‖∞ + λM̄`+ λK̄

∫ x

0

|u(t)|dt.

We substitute (2.8) into (2.7) and have

|u(x)| ≤ |A|e
−
αx

ε +
1

ε

∫ x

0

(
‖f‖∞ + λM̄`+ λK̄

∫ ξ

0

|u(t)|dt
)
e
−
α(x− ξ)

ε dξ

= |A|e
−
αx

ε +
1

ε
(‖f‖∞ + λM̄`)

∫ x

0

e
−
α(x− ξ)

ε dξ

+
λK̄

ε

∫ x

0

∫ ξ

0

|u(t)|dte
−
α(x− ξ)

ε dξ.

From here, it follows that

(2.9)

|u(x)| ≤ |A|e
−
αx

ε + α−1(‖f‖∞ + λM̄`)
(

1− e
−
αx

ε
)

+ α−1λK̄
(

1− e
−
αx

ε
)∫ x

0

|u(t)|dt

≤ |A|+ α−1(‖f‖∞ + λM̄`) + α−1λK̄

∫ x

0

|u(t)|dt.
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Applying the Gronwall’s inequality to the inequality (2.9) we get

|u(x)| ≤
(
|A|+ α−1‖f‖∞ + α−1λM̄`

)
eα

−1λK̄x

≤
(
|A|+ α−1‖f‖∞ + α−1λM̄`

)
eα

−1λK̄`,

which leads to the desired result in (2.1).
For the next estimate provided in (2.3), we first differentiate the equation

(1.1) and get

εu′′ + a′(x)u+ a(x)u′ + λK(x, x, u(x)) + λ

∫ x

0

∂

∂x
K(x, t, u(t))dt = f ′(x).

Then, letting

w(x) = u′(x),

and

(2.10) ψ(x) = f ′(x)− a′(x)u(x)− λK(x, x, u(x))− λ
∫ x

0

∂

∂x
K(x, t, u(t))dt,

we have

(2.11) εw′ + a(x)w = ψ(x).

Solving the equation (2.11) provides

w(x) = w(0)e
−

1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

ψ(ξ)e
−

1

ε

∫ x

ξ

a(s)ds
dξ,

which can be bounded as the following

(2.12)

|w(x)| ≤ |w(0)|e
−

1

ε

∫ x

0

a(s)ds
+

1

ε

∫ x

0

|ψ(ξ)|e
−

1

ε

∫ x

ξ

a(s)ds
dξ

≤ |w(0)|e
−

1

ε

∫ x

0

αds
+

1

ε

∫ x

0

|ψ(ξ)|e
−

1

ε

∫ x

ξ

αds
dξ

≤ |w(0)|e
−
αx

ε +
1

ε

∫ x

0

|ψ(ξ)|e
−
α(x− ξ)

ε dξ.

Here, having the formula of ψ(x) given in (2.10), (2.1), (2.2) and a, f ∈ C1(I),
K ∈ C1(I × I × R) we obtain

(2.13)
|ψ(x)| ≤ ||f ′||∞ + ||a′||∞|u|+ λM̄ + λK̄|u|+ λK̄1

∫ x

0

|u(t)|dt

≤ ||f ′||∞ + λM̄ + C
(
||a′||∞ + λK̄ + λK̄1`

)
,
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which implies ||ψ||∞ ≤ C∗ for a C∗ ∈ R. Hence, utilizing (2.13) in (2.12)
provides

(2.14)
|w(x)| ≤ |w(0)|e

−
αx

ε +
1

ε
‖ψ‖∞

∫ x

0

e
−
α(x− ξ)

ε dξ

≤ |w(0)|e
−
αx

ε + α−1C∗(1− e
−
αx

ε ).

On the other hand, inserting x = 0 in (1.1) and since a, f ∈ C1(I) it follows
that

|w(0)| = |u′(0)| = 1

ε
|f(0)−Aa(0)| ≤ C1

ε
.

Substituting this into (2.14) yields

|w(x)| ≤ C1

ε
e
−
αx

ε + α−1C∗(1− e
−
αx

ε ),

which provides the desired result. �

3. Difference schemes and mesh

3.1. Notation and Bakhvalov-Shishkin mesh

Let ω̄h = {0 = x0 < x1 < x2 < · · · < xN−1 < xN = `} denote a non-uniform
mesh on [0, `]. For each i = 0, . . . , N , let hi = xi − xi−1 be the step size. For
any continuous mesh function vi defined on ωh we use the notation

vx̄,i =
vi − vi−1

hi

for backward difference.
We construct our difference scheme based on Bakhvalov-Shishkin mesh.

With the Bakhvalov-Shishkin mesh, the domain is split into two subintervals
[0, σ] and [σ, `], where σ is the transition parameter. For an even discretization
parameter N > 0, we fix the transition parameter

(3.1) σ = min
{ `

2
, εα−1 lnN

}
.

We assume ε� N−1 as it is used in practice. We introduce a set of the mesh
points in the following

(3.2) xi =

{
−α−1ε ln[1− 2(1−N−1) iN ], xi ∈ [0, σ], i = 0, 1, . . . , N2 ,

σ +
(
i− N

2

)
h, h = 2(`−σ)

N , xi ∈ [σ, `], i = N
2 + 1, . . . , N.
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3.2. Discretization

For the difference approximation we utilize the following integral identity

(3.3) χ−1
i h−1

i

∫ xi

xi−1

Lu(x)ϕi(x)dx = χ−1
i h−1

i

∫ xi

xi−1

f(x)ϕi(x)dx,

with the exponential basis function

ϕi(x) = e−
ai
ε (xi−x), i = 1, . . . , N,

where

χi = hi
−1

∫ xi

xi−1

ϕi(x)dx =
1− e−aiρi

aiρi
, ρi =

hi
ε
.

We remark that ϕi solves the equation

− εϕ(x) + aiϕ(x) = 0, xi−1 ≤ x ≤ xi(3.4)

ϕ(xi) = 1.

We handle (3.3) evaluating each term separately through the quadrature rules
with weight functions and obtain the remainder terms as provided in [1]. In
the following, we deal with the differential term on the left-hand side of (3.3),

(3.5)

χ−1
i h−1

i

∫ xi

xi−1

[
εu′(x) + a(x)u(x)

]
ϕi(x)dx

= χ−1
i h−1

i

∫ xi

xi−1

[εu′(x) + aiu(x)]ϕi(x)dx

+ χ−1
i h−1

i

∫ xi

xi−1

[a(x)− ai]u(x)ϕi(x)dx

= εθiux̄,i + aiui +R
(1)
i ,

where

(3.6) θi =
aiρie

−aiρi

1− e−aiρi
,

and

(3.7) R
(1)
i = χ−1

i h−1
i

∫ xi

xi−1

[a(x)− ai]u(x)ϕi(x)dx.

For the integral term in (3.3), we use the first quadrature rules provided in [1]
which turns it into

(3.8) χ−1
i h−1

i λ

∫ xi

xi−1

ϕi(x)

∫ x

0

K(x, t, u(t))dtdx=λ

∫ xi

0

K(xi, t, u(t))dt+R
(2)
i ,

where

(3.9) R
(2)
i = λ

∫ xi

xi−1

∂

∂ξ

(∫ ξ

0

K(ξ, t, u(t))dt
)[
T0(x− ξ)− h−1

i (x− xi−1)
]
dξ,
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and T0(λ) = 1 for λ ≥ 0 and T0(λ) = 0 for λ < 0. Here, we apply the composite
right-side rectangle rule to the integral term in the right-hand side of (3.8) and
get

(3.10) λ

∫ xi

0

K(xi, t, u(t))dt = λ

i∑
j=1

hjK(xi, xj , uj) +R
(3)
i ,

where

(3.11) R
(3)
i = −λ

i∑
j=1

∫ xj

xj−1

(ξ − xj−1)
∂

∂ξ

(
K
(
xi, ξ, u(ξ

))
dξ.

Then, inserting (3.10) in (3.8) provides

(3.12)

χ−1
i h−1

i λ

∫ xi

xi−1

ϕi(x)

∫ x

0

K(x, t, u(t))dtdx

= λ

i∑
j=1

hjK(xi, xj , uj) +R
(2)
i +R

(3)
i .

On the other hand, the right-hand side of (3.3) gets the in the form

(3.13) χ−1
i h−1

i

∫ xi

xi−1

f(x)ϕi(x)dx = fi +R
(4)
i ,

where

(3.14) R
(4)
i = χ−1

i h−1
i

∫ xi

xi−1

[f(x)− f(xi)]ϕi(x)dx.

Inserting the relations (3.5), (3.12) and (3.13) in (3.3), we obtain the difference
problem for the problem (1.1)-(1.2) as

(3.15)
εθiux̄,i + aiui + λ

i∑
j=1

hjK(xi, xj , uj) = fi −Ri, i = 1, 2, . . . , N,

u0 = A,

where

(3.16) Ri = R
(1)
i +R

(2)
i +R

(3)
i −R

(4)
i .

Neglecting the error term Ri in (3.15) provides the difference scheme

LNyi := εθiyx̄,i + aiyi + λ

i∑
j=1

hjK(xi, xj , yj) = fi, i = 1, 2, . . . , N,(3.17)

y0 = A,(3.18)

where θi defined by (3.6).
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4. Error estimates and convergence results

In this section, we establish the error estimates of the approximate solution
y and analyze the convergence of the difference scheme given in (3.17)-(3.18).

The error of the difference problem, zi = yi − ui for 1 ≤ i ≤ N , is the
solution to the discrete problem

εθizx̄,i + aizi(4.1)

+ λ

i∑
j=1

hj
[
K(xi, xj , yj)−K(xi, xj , uj)

]
= Ri, i = 1, 2, . . . , N,

z0 = 0.(4.2)

Lemma 4.1. Consider the following difference problem

`Nvi := εθivx̄,i + aivi = Fi, 1 ≤ i ≤ N,(4.3)

v0 = A.(4.4)

Let |Fi| ≤ Fi and Fi be a non-decreasing function. Then, the solution of the
problem (4.3)-(4.4) satisfies

(4.5) |vi| ≤ |A|+ α−1Fi, 1 ≤ i ≤ N.

Proof. The proof follows from the maximum principle for difference operators.
Details can be found in [6]. �

Lemma 4.2. Let zi be the solution of (4.1)-(4.2). Then, zi satisfies the esti-
mate

(4.6) ‖z‖∞ ≤ C‖R‖∞.

Proof. The difference scheme equation given in (4.1) can be rewritten in the
form

(4.7) εθizx̄,i + aizi = Fi,

where

(4.8) Fi = Ri − λ
i∑

j=1

hj
[
K(xi, xj , yj)−K(xi, xj , uj)

]
.

By the Mean Value Theorem for functions with several variables we linearize
the non-linear kernel K as

K(xi, xj , yj) = K(xi, xj , 0) +
∂

∂u
K(xi, xj , ηyj)yj , 0 ≤ η ≤ 1,(4.9)

and

K(xi, xj , uj) = K(xi, xj , 0) +
∂

∂u
K(xi, xj , ζuj)uj , 0 ≤ ζ ≤ 1.(4.10)
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Inserting the linearizations (4.9) and (4.10) into (4.8) we have the estimate

|Fi| ≤‖R‖∞ + λK̄

i∑
j=1

hj |zj |.(4.11)

Then, applying Lemma 4.1 to (4.7) and utilizing the estimate (4.11) provide

|zi| ≤ α−1‖R‖∞ + α−1λK̄

i∑
j=1

hj |zj |.(4.12)

Further, applying the difference analogue of the Gronwall’s inequality to (4.12)
we have

|zi| ≤ α−1eα
−1λK̄`‖R‖∞,

which yields the result in (4.6). �

Lemma 4.3. Let a, f ∈ C1(I) and K ∈ C1(I × I × R) with

(4.13) M̄ = max
I×I
|K(x, t, 0)|,

(4.14)
∣∣∣ ∂
∂x
K(x, t, u(t))

∣∣∣ ≤ K̄1 <∞,

and

(4.15)
∣∣∣ ∂
∂t
K(x, t, u(t))

∣∣∣ ≤ K̄2 <∞.

Then, the truncation error Ri satisfies the estimate

(4.16) ‖R‖∞ ≤ CN−1.

Proof. To obtain the estimate (4.16), we proceed by bounding each error term

R1, R2, R3 and R4 separately. For R
(1)
i , we have

|R(1)
i | ≤ χ

−1
i h−1

i

∫ xi

xi−1

|(a′(s)(x− xi))u(x)|ϕi(x)dx,

where s ∈ [x, xi] comes from the Mean Value Theorem. Then, since a ∈ C1(I)
and from (2.1) we get

(4.17) |R(1)
i | ≤ C1hi.

For R
(2)
i we take into account of (4.13) and |T0(λ)| ≤ 1, so

(4.18)

|R(2)
i | ≤ λ

∫ xi

xi−1

∣∣∣(1 + h−1
i (x− xi)

) ∂
∂ξ

(∫ ξ

0

K(ξ, t, u(t))dt
)∣∣∣dξ

≤ 2λ

∫ xi

xi−1

∣∣∣ ∂
∂ξ

(∫ ξ

0

K(ξ, t, u(t))dt
)∣∣∣dξ

≤ 2λ

∫ xi

xi−1

∣∣∣ ∂
∂ξ

(∫ ξ

0

K(ξ, t, 0) +
∂

∂u
K(ξ, t, ηu)u(t)dt

)∣∣∣dξ,
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where ηu is the intermediate value for 0 < η < 1 coming from the Mean Value
Theorem. Then, from (4.13) and (2.1) we have

(4.19) |R(2)
i | ≤ 2λ(M̄ + CK̄)hi.

On the other hand, from (4.15) and (2.3) we have

|R(3)
i | ≤ λ

i∑
j=1

∫ xj

xj−1

(∣∣∣ ∂
∂ξ
K(xi, ξ, u(ξ))

∣∣∣+
∣∣∣ ∂
∂u
K(xi, ξ, u(ξ))

∣∣∣|u′(ξ)|)dξ
≤ λ

i∑
j=1

(
K̄2hj + K̄

∫ xj

xj−1

(
1 +

1

ε
e−

αξ
ε

))
dξ(4.20)

= λ

i∑
j=1

(
K̄2hj + K̄hj + α−1K̄

(
e−

αxj−1
ε − e−

αxj
ε

))
.

Then, by the Mean Value Theorem applied to the exponential term in (4.20)
with s ∈ [xj−1, xj ] it follows that

(4.21)
|R(3)
i | ≤ λ

i∑
j=1

(
K̄2hj + K̄hj + α−1K̄hje

−αsε
)

≤ C∗3 |h∗|,

where h∗ = max
1≤j≤i

hj . Lastly, for R
(4)
i , similarly to the work above and since

f ∈ C1(I) we have

(4.22)
|R(4)
i | ≤ χ

−1
i h−1

i

∫ xi

xi−1

|f ′(s)(x− xi)|ϕi(x)dx

≤ C4hi,

where s ∈ [xi−1, xi] by the Mean Value Theorem.
Further in the proof, we need to evaluate each estimate above on the sub-

intervals [0, σ] and [σ, `]. For this, we first establish the bounds on the step-size
hi on each interval. In the first sub-interval [0, σ] with σ ≤ `

2 ,

xi = −α−1ε ln[1− 2(1−N−1)
i

N
], i = 1, . . . , N/2

and hence,

hi = −α−1ε ln[1− 2(1−N−1)
i

N
] + α−1ε ln[1− 2(1−N−1)

i− 1

N
].

Then, we apply the Mean Value Theorem to hi with i∗ ∈ [i− 1, i] and get

(4.23) hi ≤ α−1ε
2(1−N−1)N−1

1− 2i∗(1−N−1)N−1
≤ CN−1.
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In the second sub-interval [σ, `], we have

xi = σ +
(
i− N

2

)
h, i = N/2 + 1, . . . , N,

where σ ≤ `
2 and

(4.24) hi =
2(`− σ)

N
≤ CN−1.

Inserting the bounds (4.23) and (4.24) in (4.17), (4.19), (4.21) and (4.22), we
have

|R(k)
i | ≤ CN

−1, k = 1, 2, 3, 4,

which implies the desired result (4.16). �

Theorem 4.4. Let u be the solution of (1.1)-(1.2) and y be the solution of
(3.17)-(3.18). If the assumptions on the functions a, f and K provided in
Lemma 4.3 hold, then

‖y − u‖∞ ≤ CN−1.

Proof. This statement is a result of Lemma 4.2 and Lemma 4.3. �

5. Algorithm and numerical results

In this section, we present the numerical results on two examples, one with
an exact solution and one with no known solution. We provide the graphs of
the approximate solutions, error estimates and the convergence values of the
approximate solution to the exact solution. Since the scheme given in (3.17)-
(3.18) is a non-linear problem, we first apply the quasi-linearization technique
to the difference scheme

εθiy
(n)
x̄,i + aiy

(n)
i

+ λ

i∑
j=1

hj

[
K(xi, xj , y

(n−1)
j ) +

∂

∂y
K(xi, xj , y

(n−1)
j )

(
y

(n)
j − y(n−1)

j

)]
= fi.

Further, we use the elimination method

y
(n)
i =

fi +Aiy
(n)
i−1 +Biy

(n−1)
i − Ci −Di

εθi
hi

+ ai + λhi
∂
∂yK(xi, xi, y

(n−1)
i )

,

y
(n)
0 = A,

where

Ai =
εθi
hi
,

Bi = λhi
∂

∂y
K(xi, xi, y

(n−1)
i ),

Ci = λhiK(xi, xi, y
(n−1)
i ),
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Di = λ

i−1∑
j=1

hj

[
K(xi, xj , y

(n−1)
j )

]
.

Example 5.1. Consider the following initial value problem

εu′(x) + e−xu(x)−
∫ x

0

u2(t)dt

= εxe−x + e
−x
ε (e−x + 2ε2x+ 2ε3 − 1)

+
ε

2
e

−2x
ε − ε2(

x3

3
− 1)− 2ε3 − ε

2
, 0 ≤ x ≤ 1,

u(0) = 1.

The exact solution to this problem is

u(x) = εx+ e−
x
ε .

Figure 5.1. The figure represents the graphs for the exact
solution and the approximate solution for ε = 2−12 and N =
64.

We calculate the exact error through the formula

eNε = ‖yN − u‖∞,
where yN is the numerical approximation of u for different N and ε values.
The convergence rate is obtained by

rN =
ln
(
eN/e2N

)
ln 2

.

In Table 5.1, we provide the errors eN , e2N and the convergence rates of the
approximate solution for various N and ε = 2−i values.
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Table 5.1. Errors eN , e2N , and rate of convergence r for
Example 5.1.

ε N = 32 N = 64 N = 128 N = 256 N = 512

3.662× 10−5 1.924× 10−5 9.835× 10−6 4.921× 10−6 2.405× 10−6

2−12 1.924× 10−5 9.835× 10−6 4.921× 10−6 2.405× 10−6 1.153× 10−6

0.929 0.968 0.999 1.033 1.060

5.745× 10−7 3.030× 10−7 1.561× 10−7 7.935× 10−8 4.002× 10−8

2−18 3.030× 10−7 1.561× 10−7 7.935× 10−8 4.002× 10−8 2.009× 10−8

0.923 0.957 0.977 0.987 0.994

8.977× 10−9 4.735× 10−9 2.440× 10−9 1.240× 10−9 6.260× 10−10

2−24 4.735× 10−9 2.440× 10−9 1.240× 10−9 6.260× 10−10 3.146× 10−10

0.923 0.957 0.976 0.987 0.993

Example 5.2. For the second test problem

εu′ + (x+ 1)u+

∫ x

0

[
(x− t)2 + x2 − u2(t) + xe(u(t))2

]
dt

= e
−2x
ε + x2 + tanh2(x) + x, 0 ≤ x ≤ 1,

u(0) = 1.

The exact solution to this problem is not known. Therefore, we compute the
approximate solution yN and use the double mesh principle to estimate the
errors and find the convergence rate. In the double mesh principle, the error is
taken as the difference between the approximate solution on mesh size N and
the approximate solution computed on double mesh 2N , namely

eNε = ‖yN − y2N‖∞,
where yN is the approximate solution on mesh N and y2N is the approximate
solution on mesh 2N . The convergence rate is calculated as it is in Example
5.1.

In Table 5.2, the errors and the convergence rates of the approximate solution
for various N and ε = 2−i values are presented.

6. Conclusion

In this study, a finite difference scheme on a Bakhvalov-Shishkin mesh is
constructed to obtain the numerical solution of an initial value problem for a
quasi-linear first-order singularly perturbed Volterra integro-differential equa-
tion with a boundary layer. It is shown that the method is first-order uniformly
convergent with respect to the perturbation parameter. The numerical results
provided in Tables 5.1 and 5.2 also agree with the analytical results on the error
estimates and convergence order. So, it is confirmed that the convergence of
the scheme is first order. We also suggest that this difference scheme method
on Bakhvalov-Shishkin mesh can be applied to the singularly perturbed linear
or non-linear problems with delay to obtain accurate numerical solutions.
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Figure 5.2. The figure shows the graphs of the approximate
solutions for ε = 2−12 and N = 64, N = 128 and N = 256.

Table 5.2. Errors eN , e2N , and rate of convergence r for
Example 5.2.

ε N = 32 N = 64 N = 128 N = 256 N = 512

2.671× 10−2 1.409× 10−2 7.227× 10−3 3.610× 10−3 1.812× 10−3

2−12 1.409× 10−2 7.227× 10−3 3.610× 10−3 1.812× 10−3 9.244× 10−4

0.923 0.963 1.001 0.995 0.992

2.269× 10−2 1.428× 10−2 7.410× 10−3 3.787× 10−3 1.917× 10−3

2−18 1.428× 10−2 7.410× 10−3 3.787× 10−3 1.917× 10−3 9.646× 10−4

0.914 0.947 0.968 0.982 0.991

2.691× 10−2 1.428× 10−2 7.413× 10−3 3.790× 10−3 1.920× 10−3

2−24 1.428× 10−2 7.413× 10−3 3.790× 10−3 1.920× 10−3 9.673× 10−4

0.914 0.946 0.967 0.981 0.989
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