• Title/Summary/Keyword: persimmon flower

Search Result 26, Processing Time 0.026 seconds

Analysis of the Volatile Organic Compounds of Persimmon Flower according to Tree Age and Floral Organ (감나무 수령과 감꽃 기관에 따른 휘발성 향기성분 분석)

  • Kim, Ji Hye;Hong, Sae Jin;Shin, Il Sheob;Eum, Hyang Lan
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.321-328
    • /
    • 2014
  • This study was conducted to investigate volatile organic compounds (VOCs) of persimmon (Diospyros kaki Thunb) flower. VOCs of persimmon flower was collected via SPE (solid phase micro extraction) and determined by GC-MS according to tree age and organs such as flower and calyx. The ratio of early bloom was higher in more than 15 year old tree than other trees showing tree age was related with flowering rate. Major VOCs of persimmon flower was a-pinene, butane, caryophyllene, cubebene, lavandulol, D-limoneneylangene, ylangene, mainly included green, fruit, and floral flavors. The number of VOCs in persimmon flower was 30 compounds in 5-9 years old tree, 24 compounds in 10-14 years old tree, and 32 compounds in more than 15 years old tree. In comparison with VOCs in organs of sweet persimmon 'Fuyu' cultivar, flower has 10 compounds of VOCs and 26.35% of relative peak area, while calyx has 14 compounds and 46.28%, respectively. In astringent persimmon, flower has 6 compounds of VOCs and 17.58% of relative peak area, while calyx has 9 compounds and 50.27%, showing calyx of both cultivars has various volatile compounds. This study will contribute to provide a basic data for the fragrance industry to use the flavor of persimmon flower.

Antioxidative Properties of Different Solvent Extracts from Persimmon (Diospyros kaki cv. Fuyu) Flower-Buds

  • You, Dong-Hyun;Lee, Seung-Cheol
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.328-332
    • /
    • 2011
  • After preparation of acetone, ethanol, methanol, and water extracts (10 g/300 mL) of dried persimmon (Diospyros kaki cv. Fuyu) flower-buds, total phenolic contents (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (RSA), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) RSA, reducing power (RP), and tyrosinase inhibitory activity of the extracts were evaluated. The methanol extracts produced the highest TPC (113.39 mg gallic acid equivalents/g), DPPH RSA ($IC_{50}=40.25\;{\mu}g/mL$), ABTS RSA ($IC_{50}=58.17\;{\mu}g/mL$) and RP ($IC_{50}=69.43\;{\mu}g/mL$) activities while the water extracts generated the lowest values. The ethanol extract showed the highest tyrosinase inhibitor activity (88.90%) at a concentration of 1 mg/mL. These results indicated that persimmon flower-buds may be a useful source of natural antioxidants.

Anti-inflammatory Effect of Flower Bud and Fruit of Sweet Persimmon, Diospyros kaki T.

  • Park, Yeo Ok;Lee, Jeong Ah;Park, Seong Moon;Ha, Min Hee;Joo, Woo Hong;Kim, Dong Wan
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.85-92
    • /
    • 2020
  • Various beneficial effects of sweet persimmon (Diospyros kaki T.) including anti-oxidation, anti-bacteria and viruses, anti-allergy were widely reported previously. However, the anti-inflammatory effect and its molecular mechanisms are not clear. In this study, the anti-inflammatory effect of the extracts of flower bud and fruit of sweet persimmon was investigated in LPS-treated RAW264.7 cells. Both extracts of flower bud and fruit showed strong inhibitory effect on the LPS-induced NF-κB activation. IκBα, the inhibitor of NF-κB, was increased and the expressions of NF-κB target genes, COX-2 and iNOS, were suppressed by the treatment with the extracts of flower bud and fruit. The expressions of pro-inflammatory cytokines, IL-1β, IL-6, TNF-α were also suppressed by the extracts. In addition, the LPS-induced wnt/β-catenin pathway and its related gene expressions including cyclin D1, wnt 3a, wnt 5a were suppressed by the extracts. The extracts also showed anti-oxidant activity and suppressive effect on the LPS-induced apoptosis of RAW264.7 cells. These results suggest that the flower bud and fruit of sweet persimmon display strong anti-inflammatory effect through inhibiting the pro-inflammatory signaling pathways in the cells.

Flower Bud Differentiation of Persimmon (Diospyros kaki Thunb.) Tree Grown in Heated Plastic House (가온(加溫) 시설(施設)재배 감나무의 화아분화(花芽分化) 특성)

  • Moon, Doo Young;Moon, Doo Kil
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.535-539
    • /
    • 2001
  • To establish the cultural practices of persimmon in heated plastic house, the growth and flower bud differentiation of 4-year old 'Nishimurawase' persimmon tree planted in 80 L pots were investigated. Temperature was kept at above $18^{\circ}C$. The earlier heating induced the earlier flower bud differentiation, while the number of days from bud burst to flower bud differentiation was 70-75 days, which was not affected by the date of heating. The date of flower bud differentiation in 'Nishimurawase' persimmon was May 1, May 21, and June 1 in the plastic house heated from Jan. 15, Feb. 15, and Mar. 15, respectively. The number of flower primordia per bud in the plastic house was 6.2-7.1, slightly fewer than that of 7.8 in the open-field, with the tendency of increasing the number by earlier heating. The days required for the differentiation of the last flower bud primordia from the beginning of differentiation of the first bud were 40-60, and that required for the flower bud differentiation of all buds on the same shoot was 30. The total carbohydrates in shoot increased and the contents of nitrogen decreased, resulting in increased C/N ratio just before flower bud differentiation, and it coincided with the time when the total carbohydates increased above 15%. During two weeks before flower bud differentiaton, The contents of zeatin per 1 g dry matter of shoot drastically increased from $27.2{\mu}g$ to $47.3{\mu}g$, while that of IAA slightly decreased from $188.6{\mu}g$ to $172.4{\mu}g$, and that of GA decreased from $2,225{\mu}g$ to $1,555{\mu}g$.

  • PDF

Analysis of Useful Components for Freeze-Dried Persimmon Flower Powder by Cultivar (품종별 감꽃 동결건조 분말의 유효성분 분석)

  • Kim, Jun-Han;Park, Seok-Hee;Mun, Hye-Gyeong;Lee, In-Seon;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.691-696
    • /
    • 2006
  • This study was carried out to analyze useful component in freeze-dried persimmon flower powder made from six cultivais. The cultivais were Dogunjosang, Kojongsi, Kabjubaeknok, Chalang, Weolhasi and SangjuDungsi. Powder of persimmon flower was prepared by milling after freeze drying at $-70^{\circ}C$. Crude lipid was the highest in Dogunjosang (57.26%). Major free sugars of the persimmon flowers were fructose ($95{\sim}310mg%$), glucose ($75{\sim}281mg%$) and sucrose ($7{\sim}28mg%$). Major organic acids were malic acid (225 mg% in Kabjubaeknok (Jun. 4th)) and tartaric acid (189 mg% in Kabjubaeknok (Jun. 4th)). Predominant free amino acids were hydroxy-L-proline(25.33 mg% in Weolhasi), L-citrulline (58.83 mg% in SangjuDungsi (May 280)) and L-threonine (11.88 mg% in SangjuDungsi (May 280)). Major phenolic compounds in the persimmon flowers were caffeic acid ($1,946{\mu}g/100 g$ in Kabjubaeknok (Jun. 4th)), p-hydioxybenzoic acid($418{\mu}g/100 g$ in SangjuDungsi (May 29th)) and protocatechuic acid($181{\mu}g/100 g$ in Kabjubaeknok(Jun. 1st)). The results suggest that persimmon flowers be potential materials as useful food ingredients.

Responses of Young 'Fuyu' Persimmon Trees to Summer Fertilization Rate and Leaf-fruit Ratio

  • Choi, Seong-Tae;Kim, Seong-Cheol;Ahn, Gwang-Hwan;Park, Doo-Sang;Kim, Eun-Seok;Choi, Jae-Hyeok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.577-583
    • /
    • 2016
  • Small-sized persimmons produced by high crop load are better accepted in the export markets. However, maintaining high crop load frequently results in weakness of tree vigor, deterioration of fruit quality, and increase of the risks for alternate bearing. This experiment was conducted to determine the combined effects of fertilization rate and leaf-fruit (L/F) ratio on container-grown 3-year-old 'Fuyu' persimmon trees. Application of 3.6-g N, 2.1-g $P_2O_5$, 2.7-g $K_2O$, 2.7-g CaO, and 0.6-g MgO was for the control fertilization rate (CF) and that of a 3-fold CF was for the high fertilization rate (HF). Commercial fertilizers were surface-applied to a container on July 6, July 17, and August 10 in three equal aliquots. Single tree for each fertilization rate was assigned for 12 L/F ratios (5, 6.3, 7.7, 9, 10.4, 13, 15.5, 18, 21, 24, 27, and 33) mostly by fruit thinning or rarely by defoliation on July 1. HF did not affect the yield, weight and soluble solids of the fruits but decreased skin color. As L/F ratio increased, yield decreased but average weight, skin color, and soluble solids of fruits increased. With HF, N and K concentrations in leaves, fruits, and shoots increased to some extent but soluble sugars in dormant shoots decreased. Many shoots were cold-injured with low L/F ratio especially at the HF. HF did not increase number of flower buds the next spring either on a shoot or on a tree basis but increased shoot length, compared with the CF. Increasing L/F ratio markedly increased number of flower buds and shoot growth the following year at both fertilization rates. Therefore, an appropriate combination of fertilization rate and L/F ratio should be necessary to maintain stable fruit production and tree vigor at high crop load.

Efficiency of Sex-linked Molecular Markers for the Selection of Seedlings Bearing Male Flowers in Persimmon (Diospyros kaki Thunb.) (감 수꽃 착생 실생개체 선발 마커의 효율성 검정)

  • Park, Yeo Ok;Shon, Ji-Young;Choi, Seong-Tae;Kim, Eun-Gyeong;Kim, Dong Wan
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.239-249
    • /
    • 2020
  • Persimmon flowers are fruit-bearing female, pollen-bearing male, or hermaphrodite, containing both a pistil and a stamen. Using prominent PCNA persimmons as male parents is very important for breeding programs, as the selection procedure for new cultivars bearing male flowers requires a long time and a large field in a traditional crossbreeding method. To improve breeding efficiency through early selection of male flower-bearing plants at the seedling stage, analysis was performed on 88 major cultivars whose gender expressions are known, using two male flower selection markers recommended by Akagi et al. The OGI locus marker and DISx-AF4S marker results showed that 83 and 72 cultivars, respectively, matched in terms of gender expression and marker analysis. For the OGI locus marker, 890 plants were selected from 2,509 seedlings obtained from crossbreeding with the mother plant "Migamjosang," which was the breeding cultivar. Comparing the gender expression of the flowers and the marker with 1,186 crossbred seedlings, excluding the unfertilized and dead plants, inconsistencies were found in 401 plants (33.8%). For the DISx-AF4S marker, 636 plants were selected from 889 seedlings obtained from 12 cross-combinations. The results of the sex expression and marker analysis were compared to 379 plants, excluding the unfertilized and dead plants, and inconsistencies were found in 247 plants (65.2%). These results indicate that the examined DISx-AF4S and OGI locus markers would not be suitable for utilization in the breeding field.

Damages of Young Persimmon Tree as Affected by Application of Immature Liquid Pig Manure

  • Choi, Seong-Tae;Park, Yeo-Ok;Ahn, Gwang-Hwan;Kim, Eun-Gyeong;Son, Ji-Young;Joung, Wan-Kyu;Hong, Kwang-Pyo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.89-95
    • /
    • 2019
  • BACKGROUND: Liquid pig manure (LPM) has been used as an alternative for conventional fertilizers on some gramineous crops. However, its chemical properties varied widely depending on the degree of the digestion. A pot experiment was conducted to determine the responses of persimmon trees to immature (not well-digested) LPM application. METHODS AND RESULTS: Ten application levels of immature LPM, consisted of a total of 3 to 30 L in 3-L increment, were applied during summer to 5-year-old 'Fuyu' trees grown in 50-L pots. Increasing the LPM application rate caused defoliation, wilting, and chlorosis in leaves. When applied with the rate of 3 L during summer, the tree produced small fruits with low soluble solids and bore few flower buds the following season, indicating insufficient nutritional status. In trees applied with the LPM rates of 6~12 L, both fruit characteristics and above-ground growth of the trees appeared normal but some roots were injured. However, application of higher LPM rates than 27 L resulted in small size, poor coloration, or flesh softening of the fruits the current season. Furthermore, the high LPM rates caused severe cold injury in shoots during winter and weak shoot growth the following season. It was noted that the application of higher LPM rate than 9 L damaged the root, even though above-ground parts of the tree appeared to grow normally. CONCLUSION: The results indicated that an excessive immature LPM application could cause various injuries on leaves, fruits, and the roots in both the current and the following season.

Effect of Long Day Treatment on Growth and Flower Bud Differentiation of Persimmon (Diospyros Kaki Thunb.) Grown in Heated Plastic House (장일처리(長日處理)가 가온 시설재배 감나무의 생육(生育) 및 화아분화(花芽分化)에 미치는 영향(影響))

  • Moon, Doo Young;Moon, Doo Kil
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.540-544
    • /
    • 2001
  • The effect of long day treatment on the growth and flower bud differentiation of persimmon tree grown in a heated plastic house was investigated. The rate of leaf sprout was 65% in the long day treatment and 71% in natural day (control). In the long day, the shoot grew 16.7 cm longer, full bloom and harvest days were shorter, fruit weight was 16% lighter, and the sweetness and firmness of fruit were lower. The photosynthesis rate in the long day treatment was higher, showing the tendency of increasing with time. However, the rate of photosynthesis increased after 1600 hours showed higher than the control. Carbohydrate accumulation in the shoot was decreased, with higher nitrogen content and lower C/N ratio in the long day. The number of flower primordia per bud was less, and the days for differentiation was longer in the long day.

  • PDF

Tree Response of 'Fuyu' Persimmon to Different Degrees of Cold Damage on the Buds at Budburst (발아기 꽃눈의 저온피해 정도에 따른 '부유' 감나무의 수체 생장 반응)

  • Choi, Seong-Tae;Park, Doo-Sang;Son, Ji-Young;Park, Yeo-Ok;Hong, Kwang-Pyo;Rho, Chi-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2013
  • BACKGROUND: The buds of persimmon trees are susceptible to cold damage, often with the late frost, at the time of budburst. This study was conducted to determine effect of the cold damage on shoot and fruit growth the current season. METHODS AND RESULTS: 'Fuyu' trees, grown in 50-L pots, were placed for 1 h at $-2.2{\pm}0.5$, $-2.6{\pm}0.5$, or $-3.0{\pm}0.5^{\circ}C$ within a cold storage, at their budburst on April 5. Some trees under ambient temperature at $10-17^{\circ}C$ served as the control. Cold damage of the buds containing flower buds was 54% at $-2.2^{\circ}C$, and significantly increased to 95% at $-3.0^{\circ}C$. The bud damage included the complete death of all, complete death of main buds only, or the late and deformed shoot growth in the spring. Number of flower buds in early May dramatically decreased as the damage ratio increased. Since the thinning of flower buds in mid-May and fruitlets in early July was done in no or slightly damaged trees, the final number of fruits and yield did not decrease compared with the control when the damage increased by 60% and 70%, respectively. Average fruit weight and skin coloration tended to be better with increasing bud damage. Shoot growth was more vigorous in those trees whose buds were severely damaged by low temperature. CONCLUSION(S): Shoot growth and the yield may depend on the number of flower buds and percent fruit set after the cold damage.