• Title/Summary/Keyword: permanent magnets

Search Result 499, Processing Time 0.027 seconds

PID control and fuzzy control of hybrid magnetic levitation system (복합자석형 자기부상차량의 PID제어와 Fuzzy제어)

  • 권병일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.699-703
    • /
    • 1991
  • A magnetic levitation system with hybrid magnets, which is composed of permanent magnets and electromagnets, consumes less power than the conventional attraction type system. In this paper, we propose PID controller and PID-Fuzzy controller for hybrid magnet. We first present "constant gap" control technology with PID controller. Secondly, "zero power" control technology with PID-Fuzzy hybrid controller is presented.roller is presented.

  • PDF

Study on the Optimization of Reduction Conditions for Samarium-Cobalt Nanofiber Preparation (사마륨-코발트 자성 섬유 제조를 위한 환원 거동 연구 및 환원-확산 공정의 최적화)

  • Lee, Jimin;Kim, Jongryoul;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.334-339
    • /
    • 2019
  • To meet the current demand in the fields of permanent magnets for achieving a high energy density, it is imperative to prepare nano-to-microscale rare-earth-based magnets with well-defined microstructures, controlled homogeneity, and magnetic characteristics via a bottom-up approach. Here, on the basis of a microstructural study and qualitative magnetic measurements, optimized reduction conditions for the preparation of nanostructured Sm-Co magnets are proposed, and the elucidation of the reduction-diffusion behavior in the binary phase system is clearly manifested. In addition, we have investigated the microstructural, crystallographic, and magnetic properties of the Sm-Co magnets prepared under different reduction conditions, that is, $H_2$ gas, calcium, and calcium hydride. This work provides a potential approach to prepare high-quality Sm-Co-based nanofibers, and moreover, it can be extended to the experimental design of other magnetic alloys.

Magnetic Field Computations of the Magnetic Circuits with Permanent Magnets using Finite Element Method (유한요소법을 이용한 영구자석 자기회로의 자석 해석)

  • 박영건;정현규;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.5
    • /
    • pp.167-172
    • /
    • 1984
  • This paper describes the finite element analysis of magnetostatic field problems with permanent magnets. Two kinds of algorithms, one using the magnetic vector potential and the other using the magnetic scalar potential, are introduced. The magnetization of the pemanent magnet is used as the source instead of the magnetic equivalent current in both of the formulations using the magnetic vector potential and the magnetic scalar potential. A simple functional, which has only the region integral instead of the region integral and boundary integral, is derived in the formulation using the magnetic scalar potential. These make the formulation of the system equations simpler and more convenient than the conventional methods. The numerical results by the two proposed algorithms for a C-type permanent magnet model are compared with the analytic solutions respectively. The numerical results are in good agreement with the analytic solutions.

  • PDF

Permanent magnet gearless traction drive for German high speed train ICE 3

  • Binder A.;Koch Th.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.756-760
    • /
    • 2001
  • Two different designs of permanent magnet motors as direct wheel-set drive for the German high speed train ICE 3 are designed, one with surface mounted magnets (SM) and one with buried rotor magnets (BM). The surface magnet motor has $17\%$ less mass and a slightly higher efficiency and was therefore chosen for further investigations. Compared with the conventional drive system of the ICE 3, consisting of geared inverter fed induction machines, the gearless permanent magnet direct drive yields about $16\%$ lower losses. This calculation is based on the route parameters of the high speed track between Frankfurt/Main and Cologne in Germany, which is currently under construction.

  • PDF

Detent Force Reduction in a Cylindrical Type PMLSM (원통형 영구자석 선형 동기전동기의 디텐트력 저감)

  • Lee, Jong-Jin;Youn, Sung-Whan;Koh, Chang-Seop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.209-215
    • /
    • 2006
  • Recently Permanent Magnet Linear Synchronous Motors(PMLSMs) are widely used for many linear transportation applications. The PMLSM has many advantages such as simple structure, high speed and thrust. However, especially in short primary type PMLSM, there exists very large detent force, which makes the thrust force ripple, undesired vibration and noise. The detent force is composed of the Cogging force and the End force. The Cogging force comes from the interaction between the permanent magnets and interior teeth of the stator. And the End force acts on the exterior teeth of the stator by the permanent magnets. Usually End force is larger than Cogging force, so the detent force is drasically reduced only by reducing the End force. This paper shows the End force is minimized by optimizing the stator length and chamfering the shape of the exterior teeth of the stator.

Analytical and Experimental Study for Electromagnetic Performances of a Tubular Linear Machine with Axially Magnetized Single-sided Permanent Magnets

  • Shin, Kyung-Hun;Jeong, Kyoung-Hun;Choi, Jang-Young;Hong, Keyyong;Kim, Kyong-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.432-438
    • /
    • 2015
  • This paper presents an electromagnetic analysis of a tubular linear machine with axially magnetized permanent magnets using improved analytical techniques. Based on the magnetic vector potential and a two-dimensional polar-coordinate system, the magnetic field and armature reaction field can be derived. Using these, equivalent circuit parameters, such as the electromotive force and inductance, can be obtained analytically. Finally, the generating characteristics are derived with the equivalent circuit method. In this study, the finite element method was employed to provide a comparative evaluation, and experiments were conducted to validate the results of the analytical analysis.

Study on Rod Position Indication System using Permanent Magnets with Shielding Plates for a Control Rod Drive Mechanism

  • Lee, Jae Seon;Cho, Sang Soon;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.439-443
    • /
    • 2015
  • A control rod drive mechanism (CRDM) is an electromechanical equipment that provides linear movement for the control rods to control the nuclear reactivity in a nuclear reactor. A rod position indication system (RPIS) detects the control rod's position. To enhance the measurement accuracy of the system, a magnetostrictive type sensor with capability of generating operation limiting signals would be adapted instead of a conventional RPIS for a CRDM. An RPIS was modelled for a numerical analysis with the permanent magnets at the stationary limit positions and magnetic shielding plates with a moving permanent magnet. The performance analysis of the RPIS were conducted, and the results were discussed here.

Performance Measurement of the Eddy Current Heat Generator with Different Array of Permanent Magnets (서로 다른 자석 배열을 가지는 와전류 열원화 장치의 성능 측정)

  • Yun, Teak-Han;Son, Young-Woo;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Eddy Current is one of ways to make heat using rotational energy of wind turbine rotor. Four difference arrays of permanent magnets around rotor surface are used to generate heat using eddy current in this study. For the evaluation of heating performance, new test rig is prepared to measure water flow and temperatures in the inlet and outlet of the eddy current heat generator. In the test, torque and rotational speed are also measured in the motor driven system, and evaluated if the torque is matched with it of wind turbine rotor or not. It will be shown that the eddy current heat generator can be applied to real urban wind energy systems in this study.

Design and Analysis of an Inchworm Actuator with Electromagnetic Switching (자속경로 스위칭에 의한 인치웜 액츄에이터의 설계 및 해석)

  • Jung, Jae-Sung;Min, Hyun-Jin;Kim, Sang-Chae;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.843-848
    • /
    • 2000
  • In general, inchworm actuators are composed of two clamping piezoelectric elements and one expansion piezoelectric element. In this paper, two electromagnetic clampers are used for higher speed and high load. Dynamic equation is derived to simulate the behavior of the inchworm actuator with electromagnets. Electromagnetic clamper is used to improve the performance of the inchworm actuator. The electromagnetic clamper is composed of two permanent magnets and one traditional electromagnet. The permanent magnets play the role of the source of magnetic field to make clamping force higher, and the electromagnet is to change the mode between clamping and free. The driving voltage profile is also analyzed to improve the speed of inchworm actuator. The real system was manufactured and experimented to find dynamic characteristics and the maximum speed is obtained. Dynamic model is verified by comparing with experimental results.

  • PDF

Linear Actuator using Magnetic Shield of Rotating Magnet Wheel (부분 자기 차폐된 마그네트 휠의 선형구동기로의 응용)

  • Shim, Ki-Bon;Park, Jun-Kyu;Lee, Sang-Heon;Jung, Kwang-Suk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.923-925
    • /
    • 2008
  • As known generally, when permanent magnets whose poles are upward and downward in order, arranged into the circumferential direction rotate under the conducting plate, the rotating force acts on the plate as well as the repulsive force. If the magnetic field by the magnet wheel(the above rotating permanent magnets) is partially shielded, the magnet wheel over open region can be a linear induction motor. The distinct feature from induction motor is that the traveling magnet field is produced by the moving permanent magnet instead of ac current. Furthermore, a variation of the open region changes the direction of the thrust force. In this paper, we introduce a concept of the linear actuator using the magnet wheel. Under the above shielding condition, a few simulation results and its verification from a simple test setup are described.

  • PDF