• Title/Summary/Keyword: periodic solutions

Search Result 318, Processing Time 0.021 seconds

EXISTENCE OF PERIODIC SOLUTIONS IN FERROELECTRIC LIQUID CRYSTALS

  • Park, Jinhae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.571-588
    • /
    • 2010
  • We introduce the Landau-de Gennes model in order to understand molecular structures in ferroelectric liquid crystals. We investigate equilibrium configurations of the governing energy functional by means of bifurcation analysis. In particular, we obtain periodic solutions of the functional, which is a signature of a rich variety of applications of ferroelectric materials.

ALMOST PERIODIC SOLUTIONS OF LINEAR DIFFERENCE SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • In this paper, we present an elementary proof for the existence of almost periodic solutions of linear nonhomogeneous difference systems.

  • PDF

EXISTENCE OF PERIODIC SOLUTIONS FOR PLANAR HAMILTONIAN SYSTEMS AT RESONANCE

  • Kim, Yong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1143-1152
    • /
    • 2011
  • The existence of periodic solutions for the planar Hamiltonian systems with positively homogeneous Hamiltonian is discussed. The asymptotic expansion of the Poincar$\acute{e}$ map is calculated up to higher order and some sufficient conditions for the existence of periodic solutions are given in the case when the first order term of the Poincar$\acute{e}$ map is identically zero.

PERIODIC SOLUTIONS OF A DISCRETE TIME NON-AUTONOMOUS RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH CONTROL

  • Zeng, Zhijun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.465-474
    • /
    • 2007
  • With the help of the coincidence degree and the related continuation theorem, we explore the existence of at least two periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system with control. Some easily verifiable sufficient criteria are established for the existence of at least two positive periodic solutions.

PERIODIC SOLUTIONS FOR A QUASILINEAR NON-AUTONOMOUS SECOND-ORDER SYSTEM

  • Tian Yu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.263-271
    • /
    • 2006
  • In this paper, a quasilinear second-order system with periodic boundary conditions is studied. By the least action principle and classical theorems of variational calculus, existence results of periodic solutions are obtained.

NEW CONDITIONS ON EXISTENCE AND GLOBAL ASYMPTOTIC STABILITY OF PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH TIME-VARYING DELAYS

  • Zhang, Zhengqiu;Zhou, Zheng
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.223-240
    • /
    • 2011
  • In this paper, the problem on periodic solutions of the bidirectional associative memory neural networks with both periodic coefficients and periodic time-varying delays is discussed. By using degree theory, inequality technique and Lyapunov functional, we establish the existence, uniqueness, and global asymptotic stability of a periodic solution. The obtained results of stability are less restrictive than previously known criteria, and the hypotheses for the boundedness and monotonicity on the activation functions are removed.

REPRESENTATIONS OF SOLUTIONS TO PERIODIC CONTINUOUS LINEAR SYSTEM AND DISCRETE LINEAR SYSTEM

  • Kim, Dohan;Shin, Jong Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.933-942
    • /
    • 2014
  • We give a representation of the component of solutions with characteristic multiplier 1 in a periodic linear inhomogeneous continuous system. It follows from this representation that asymptotic behaviors of the component of solutions to the system and to its associated homogeneous system are quite different, though they are similar in the case where the characteristic multiplier is not 1. Moreover, the representation is applicable to linear discrete systems with constant coefficients.