• Title/Summary/Keyword: periodic point

Search Result 282, Processing Time 0.027 seconds

Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory (목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성)

  • Choi, Nak-Yoon;Choi, Young-Lim;Kim, Jong-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

Energy Optimization of a Biped Robot for Walking a Staircase Using Genetic Algorithms

  • Jeon, Kweon-Soo;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.215-219
    • /
    • 2003
  • In this paper, we generate a trajectory minimized the energy gait of a biped robot for walking a staircase using genetic algorithms and apply to the computed torque controller for the stable dynamic biped locomotion. In the saggital plane, a 6 degree of freedom biped robot that model consists of seven links is used. In order to minimize the total energy efficiency, the Real-Coded Genetic Algorithm (RCGA) is used. Operators of genetic algorithms are composed of a reproduction, crossover and mutation. In order to approximate the walking gait, the each joint angle is defined as a 4-th order polynomial of which coefficients are chromosomes. Constraints are divided into equality and inequality. Firstly, equality constraints consist of position conditions at the end of stride period and each joint angle and angular velocity condition for periodic walking. On the other hand, inequality constraints include the knee joint conditions, the zero moment point conditions for the x-direction and the tip conditions of swing leg during the period of a stride for walking a staircase.

  • PDF

Stochastic Analysis of Self-sustained Oscillation Loop for a Resonant Accelerometer

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.574-578
    • /
    • 2004
  • In this paper, a nonlinear feedback system is analyzed for a surface micromachined resonant accelerometer. For this, a brief illustration of the plant dynamics is given. In the analysis, the periodic signal in the nonlinear feedback loop is obtained by the limit cycle point, which is best approximated via the describing function method. Considering the characteristic feature of plant dynamics, a simple phase shifted relay with finite slope is designed for the nonlinearity implementation. With a describing function for random plus sinusoidal input, we analyzed the effect of a white Gaussian noise on oscillation frequency. Finally, simulation and experimental result is given.

  • PDF

Dynamic Stability of a Free-Free Beam with a Tip Rigid Body under a Controlled Pulsating Thrust (끝단 강체를 갖고 맥동 제어추력을 받는 양단 자유보의 동적 안정성)

  • Ryu, Bong-Jo;Lee, Gyu-Seop;Seong, Yun-Gyeong;Choe, Bong-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.232-239
    • /
    • 2000
  • The paper describes the parametric instability of free-free beams subjected to a controlled pulsating follower force. The beam has a tip rigid body not a mass point, and the direction of pulsating follower force is controlled by the direction control sensor. Equations of motion are derived by Hamilton's principle and the instability regions are obtained by finite element formulation. The effects of magnitude, rotary inertia, the distance between free end of the beam and the center of gravity of the rigid body on the instability types and regions are investigated by the change of the constant and periodic part of the follower force.

A study on sound radiation from isotropic plates stiffened by unsymmetrical beams (비대칭 보에 의해 보강된 등방성 평판의 음향방상에 관한 연구)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, Jong-Tye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.753-761
    • /
    • 1998
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal unsymmetrical beams subjected to a sinusoidally time varying point load. The plate is assumed to be infinite in extent, and the beams are considered to exert both line force and moment reactions on it. Using this theoretical model, the sound pressure levels on axis in a semi-infinited fluid (water) bounded by the plate were calculated using three numerical tools such as the Gauss-Jordan method, the LU decomposition method and the IMSL numberial package. Especially, the variation in the sound pressure levels and their modes were investigated according to the change in frequency, bay spacing and bay distance.

DESIGN-ORIENTED AERODYNAMIC ANALYSES OF HELICOPTER ROTOR IN HOVER (정지비행 헬리콥터 로터의 설계를 위한 공력해석)

  • Jung H.J.;Kim T.S.;Son C.H.;Joh C.Y.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.1-7
    • /
    • 2006
  • Euler and Navier-Stokes flow analyses for helicopter rotor in hover were performed as low and high fidelity analysis models respectively for the future multidisciplinary design optimization(MDO). These design-oriented analyses possess several attributes such as variable complexity, sensitivity-computation capability and modularity which analysis models involved in MDO are recommended to provide with. To realize PC-based analyses for both fidelity models, reduction of flow domain was made by appling farfield boundary condition based on 3-dimensional point sink with simple momentum theory and also periodic boundary condition in the azimuthal direction. Correlations of thrust, torque and their sensitivities between low and high complexity models were tried to evaluate the applicability of these analysis models in MDO process. It was found that the low-fidelity Euler analysis model predicted inaccurate sensitivity derivatives at relatively high angle of attack.

THE HAMILTONIAN SYSTEM WITH THE NONLINEAR PERTURBED POTENTIAL

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.195-206
    • /
    • 2007
  • We investigate the multiplicity of $2{\pi}$-periodic solutions of the nonlinear Hamiltonian system with perturbed polynomial and exponential potentials, $\dot{z}= JG^{\prime}(z)$, where $z:R{\rightarrow}R^{2n}$, $\dot{z}={\frac{dz}{dt}}$, $J=\(\array{0&-I\\I&0}\)$, I is the identity matrix on $R^n,G:R^{2n}{\rightarrow}R$, G(0, 0) = 0 and $G^{\prime}$ is the gradient of G. We look for the weak solutions $z=(p,q){\in}E$ of the nonlinear Hamiltonian system.

  • PDF

Simulation and Analysis of Losses of Switching Device for Single Grid-connected Full bridge inverter (단상 계통 연계형 풀브릿지 인버터의 스위치 손실 모의 및 분석)

  • Son, Myeongsu;Lim, Hyun Ji;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.101-102
    • /
    • 2017
  • This paper presents analysis of losses of switching device for full bridge inverter connected to grid. The losses are a dominant factor that judges efficiency of the system. The losses of switching device are divided to switching loss and conduction loss. They are can be estimated by analyzing periodic switching waveforms. The switching loss is generated at the point that turn-on and off. And the conduction loss is generated while the switch is on condition. The estimated losses of switch are compared to simulation result in this paper.

  • PDF

Chaos analysis for the periodic nonlinear system using harmonic balance method (조화함수법을 이용한 주기 비선형 시스템의 Chaos 해석)

  • Kim, Y.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.75-85
    • /
    • 1994
  • 주기함수의 외력을 갖는 버선형 시스템의 다양한 응답 특성을 구하기 위해 새로운 조화함수법(HBM)을 적용하였다. 새로운 조화함수법의 해는 비선형항을 선형항으로부터 따로 분리시킨 다음 같은 주파수 성분을 갖는 비선형 방정식들을 Newton-Raphosn법으로 풀어서 구하였다. 다양한 천이(Bifurcation) 특성을 해석적으로 판별하기 위하여 HBM의 해를 이용하여 구한 섭동 방정식의 Floquet 지수의 고유해를 사용하였다. 새로이 개발한 HBM과 천이 판별법을 1차원 비선형항을 갖는 구조물인 ALP(Articulated Loading Platform) 모델과 다차원인 비선 형 회전체 모델에 적용시켜 HBM의 해의 정확성과 이들 시스템의 천이 특성의 하나인 Chaos 존재를 확인 하였다.

  • PDF