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Abstracts This paper considers a global resolution of kinematic redundancy under inequality constraints
as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state
variable inequality constraints, and joint velocity limits as control variable inequality constraints. Neces-
sary and sufficient conditions are derived by using Pontryagin’s minimum principle and penalty function
method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic
and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numer-
ical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the
optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for
the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of
the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.
Keywords Redundant manipulator, Inverse kinematics, Global optimization, Kinematic control, Pontrya-

gin’s minimum principle, Penalty function method, Evolutionary programming

1 Introduction

Robot manipulators often show kinematical limitations in the
face of singularities, joint limits, joint velocity limits, obsta-
cles in the task space, etc. To overcome these limitations and
to increase dexterity, the usage of kinematic redundancy has
been widely studied.

So far, these problems have been defined by using op-
timization theory which minimizes a performance measure
subject to equality and inequality constraints. Such ap-
proaches to resolve kinematic redundancy can be classified
into two main categories: local resolution{l, 2] and global
one. This paper focuses on global optimization approaches.

For this purpose, many researchers(3, 4] have taken ad-
vantage of the well-known calculus of variation approach and
Pontryagin’s minimum principle[5] with equality constraints.
However, relatively little has been done to incorporate the in-
equality constraints into the global redundancy resolution.

Recent work[6] has proposed one such method treating
joint space inequality constraints and task space ones by us-
ing a global exterior penalty function method. It was pointed
out[6] that the goal was to find a feasible path rather than an
optimal one. In addition, it appeared that the method con-
sidered only configuration-dependent inequality constraints.

The main approach of this paper is to regard a global
resolution of kinematic redundancy under inequality con-
straints as an optimal control with state and control vari-
able inequality constraints. Hence this approach addresses
virtually all of the kinematic inequality constraints and if
successful, guarantees the cyclic behavior of joint motion by
using periodic boundary conditions.

2 Optimal Formulations

Our formulation begins with the integral type performance
measure

Q= /tf G(9,6,t)dt (1)
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subject to the kinematic equality constraints

z(t) = F(6(t)) (2)
or .
z(0(t)) = J(8(£)6(t), 3)
and the kinematic inequality constraints
r(8(t),6(t)) <0 (4)

where 8(t) € R" is the joint vector, z(t) € R™ denotes the
vector for position and orientation of the end effector, f is an
m-dimensional vector, and J € ®#™*" with m < n denotes a
Jacobian matrix. .

As a reasonable candidate for G(#, 6,t), many researchers
have chosen the following function:

. 1.7 -

G(9,0,t) = 50 W(8,t)0 + knp(0,t) (5)
where W denotes a symmetric and positive definite matrix
for weighting joint velocity, and p(#) is a function of joint
pose to be minimized, such as the inverse of manipulability
measure.

The kinematic inequality constraints deal with joint limits,
obstacles, and joint velocity limits in a natural way. Let
0:.(0:1) denote the upper(lower) joint limit for joint 4, then
the inequality constraints for joint limits can be described
as:

8 — 0, <0 (i=1,...,n)
—0;+60.:<0 (i=1,...,n).

(6)
(7)
To formulate obstacles, a kind of distance measure between

robot and obstacles can be utilized. In this case, one can
consider the following inequality constraints:

Ti

Tn+i

(8)

ron+: = —(distance measure) <0 (i=1,...,q)

where ¢ is the number of the obstacle condition.



Similarly, let 6;, (i) is the upper(lower) joint velocity
limit for the i-th joint. Then the inequality constraints for
joint velocity limits can be formulated by using the matrix
form as follows:

A6-b<0 9
with
I 9‘114 ]
I. B
A= __ 6%271.)(11 , b= —— €R2n. (10)
-1, -0
L "'énl J

Suppose that @ satisfying eq.(3) exists. Then, it can be

replaced by
6=J g+ T, ~J u=g(0,u,t) (11)
where u denotes an n-dimensional vector. So, through this
formulation, a redundancy resolution problem may be re-
garded as a kind of optimal control problems with » € R"
as a control variable vector. It is also well known that u is
often utilized as a gradient vector of performance measure
for local optimization. In the context of optimal control,
configuration-dependent inequality constraints such as joint
limits and obstacles may be regarded as state variable in-
equality constraints, and joint velocity limits as control vari-
able inequality constraints.
So, for the joint-limits and obstacles, one more state vari-
able can be included by using the penalty functions as fol-

lows:
2n+q

i1 = z ¢iri(0)°H(r:) = gnta

=1

(12)

where ¢; is a weighting scalar, and H(r) is a unit Heaviside
step function defined by

H(r)={

To incorporate the state and control variable inequality
constraints mentioned above into our formulation, the per-
formance cost can be modified as follows:

0
1

ifr<o

otherwise. (13)

t1
Q" = D(8,0n41,t) + / G*(0,u,t)dt (14)

to

where D is chosen for boundary conditions, which will be
discussed later. G* includes the penalty functions for control
variable inequality constraints as follows:

. 1
G (0,wt) = S9"Wg+kup(6)

+3(4g - O K H(4g-b) (15)

where K; € R2"*2" is a constant diagonal matrix with pos-
itive elements and H € R***?" is a diagonal matrix with
Heaviside functions as elements, which is an abbreviated
form of H(A@ — b) for brevity.

According to Pontryagin’s minimum principle, the Hamil-
tonian for this purpose is defined as follows:

H(O(E),u(t), ¥(t),t) =G + ¢ g+ Yntignt1  (16)
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where ¥ € R" and ¥n+1 € R' are costate vectors. For
brevity of the formulation, yet without loss of generality, let
us assume that W is a constant.

Then, the necessary conditions for the optimality are de-
rived as follows:

T
6= (g—':;) = 9(0,.0) (a7)
boir = 6311 = gt (18)
: oHN\T
v=-(%)
T
= - (-‘g—g) (Wg+v+ATK{HT (Ag — b))
T 2n+gq \T
k5 (L) s 3 00) (52 )HED  (19)
i=1
dir = —a%f{: - (20)
and
OHNT + T T T
(5'_‘.) = (In—J*{W + ATKTHT A)g
~A"KTH™b+ ¢} =0. (21)

Let us consider projecting the Hessian matrix 0°H/0u>
into the null space of J, which leads to the following positive
definite matrix:

2
. (a H
where Z is a null space matrix of J, the relation of which is

du? ) ZT =z(W+ ATKTHTA)ZT  (22)
(23)

zJT =o.

Therefore, satisfaction of (21) is sufficient as well as neces-
sary to guarantee that optimal u causes H to be a minimum.

3 Boundary Conditions

The boundary conditions(BC) as well as the necessary condi-
tions mentioned in the preceding section must be considered
to obtain a unique optimal solution satisfying constraints.
Among such boundary conditions, three cases are notewor-
thy: natural boundary conditions, periodic boundary condi-
tions, boundary conditions for state variable inequality con-
straints.

3.1 Natural Boundary Conditions

These conditions consider the case where there are no re-
quirements on both the initial and the final joint poses ex-
cept for the kinematic equality constraints (2). These can
be obtained with the transversality condition in [3] and are
optimally modified with Z in this paper, as is shown in Table
1.

3.2 Periodic Boundary Conditions

Periodic joint motion requires the following periodic bound-
ary conditions

0(to) = 0(ts). (24)
In order to fix the final value of 8, D is given by
1
D(8,ts) = [8(ts) — 6(to)] K s[0(ts) — 8(t0)] (25



where K is a constant diagonal matrix with positive ele-
ments. So, the extra boundary conditions are derived as

oD

T
W) = KT[0(t;) - 8(tc)] =0.  (26)

witn) =

3.3 BCs for Inequality Constraints

If and only if the state variable inequality constraints are
satisfied, the additional state 6,4, does not change with time.
This fact leads to the boundary condition for 8,41 as follows:

Bnt1(to) = On41(ty). (27)
In this case, D is defined as
1
D(On+1,t5) = 5ksl0nta(ts) ~ On+1(t0)]” (28)

where k¢ is a constant scalar. Then, we obtain

Unii(tr) = gy = kylfnea(ty) = Busato)] = 0. (29)

Types Left End Right End
Natural z(ty) = f(0(t5))
BCs Z(to) =0 Y(ty) =0
Periodic | z(to) = f(6(t0)) 8(ts) = 6(to)
BCs W(t;) =0
Inequality Ont1(ty) = Bni1(to)
BCs Yns1(ty) =0

Table 1: Summary of boundary conditions

The boundary conditions mentioned above are summa-
rized in Table 1. Now, we have a two-point boundary-value
problem (TPBVP) which consists of 2n + 2 first-order dif-
ferential equations and the same number of boundary condi-
tions.

4 Numerical Algorithm

In this paper, without loss of generality, we consider bound-
ary conditions for periodic joint motion and inequality con-
straints, and we propose a two-stage algorithm which firstly
selects an initial joint pose to find the corresponding min-
imum cost, and next obtains the optimal joint pose with
globally minimum cost.

4.1 First Stage Algorithm

Given the desired end-effector velocity vector £(t), initial
joint pose 8(to), termination constant ¢, and maximum num-
ber of iteration M, the procedure of the proposed algorithm
is as follows:

1. Initialize the control history u‘®(t), t € [to, ] by using
a discrete approximation which subdivides the interval
[to,ts] into N subintervals with equal duration. Con-
sider u(® (t) as being piecewise-constant during each of
these subintervals; i.e.

w(t) = (), t € [t thr1) (30)

where k = 0,1,..., N — 1. After setting the iteration
index j zero, proceed to step 2.
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Using the control history u), integrate the state equa-
tions (17) and (18) from to to t; with the given initial
conditions &(to) and 6.41(to) and store the resulting
state trajectory 8U)(¢) and Gfﬂl(t).

Compute %) (¢;) and 1/13_31 (tf) by substituting 8V (¢5)
and 6 (¢;) into the boundary conditions (26) and (29)
Using this value of $/)(¢;) and wf,’ll(t #) as the initial
condition, control history uU) state trajectory 89 ) and
95{3_1, integrate the costate equations (19) and (20) from
ts to tg, and compute Q* and the following

/t,
to

At each sampling time tx, generate a new control given
by

2

(€]
oH dt.

du

Te

®) (31)

OH

. ) ()
u(]'“)(tk) = u(])(tk) _ Ku'g; (tk)-

(32)
If the terminal condition

T.<e or j2 M (33)
is satisfied, stop the iterative procedure. Store the re-
sulting optimal state, control and minimum cost Q*.

Otherwise, set j = j + 1 and go to step 2.

4.2 Second Stage Algorithm

Let us consider the self-motion manifold as follows:

I'(z) = {8 € R" : £(0) = ). (34)

The self-motion manifold can be parameterized with a €
R*~™, which can span the whole self-motion manifold.
Then, we obtain 8(to) = 6(a).

Given 6(to), global minimum cost @
we can consider the following function:

Qmin = Qmin(@)-

Now, the problem is modified to find the global minimum
of Qpin(@). This function, however, is such a complicated
nonlinear function that it is hard to find a global minimum.
Simply, the conventional search method can be consid-
ered, which searches the whole space spanned by a. But
this may require heavy computational amounts when the de-
gree of redundancy(dor) is more than one. To overcome this
problem, more efficient algorithms such as the Evolutionary
Programming(EP)[7] may also be considered.

. - .
min 1S unique, thus

(35)

5 Simulation

A 3-dof planar robot manipulator is considered as a sim-
ulation example because of its simplicity for explanation.
The link lengths are I; = 3.0, Iz = 2.5, and I3 = 2.0 units.
The primary task for the end-effector is a cyclic motion (i.e.
tracking a circle in a plane of the task space) which is rep-
resented as follows:

- cos(2nt) + 3.0

z(t) = —sin(2rt)

for t € [0,1]. (36)
For a configuration-dependent performance measure, the
inverse of the well-known manipulability measure is selected

as
p(8) = 1/\/det(JJT)

(37)



[rad] | [rad] | [rad/sec] | [rad/sec]
1} -1.7 1.7 -2.0 2.0
2| -21 2.1 -2.0 2.0
3] -21 21 -2.0 2.0

Table 2: The physical limits of joints and their velocities
of the simulated manipulator

and W = I is treated for the weighting matrix.

The kinematic limitation of this robot is shown in Table
2. Then, the seventh inequality constraint for an obstacle in
the task space is represented as:

77 (0) = — (L cos(1) + l2 cos(81 + 62) — 4.3)2

— (l1sin(61) + l2sin(6y + 62) +3.0)> +2 < 0. (38)

Let us consider one case where the initial joint pose is
fixed as (0) = [—1.521,1.951,1.353]7. The resulting glob-
ally optimal and periodic joint motions are shown without
and with inequality constraints in Fig.1 and in Fig.2, respec-
tively. Fig.2 shows that the inequality constraints are well
satisfied.

When the initial joint pose is not fixed, it is observed
that the proposed method using the second stage algorithm
finds the best initial joint pose and the corresponding joint
trajectory with globally minimmum performance cost. The
simulation result for this example is not included owing to
the space limit.

6 Conclusion

This paper presented a new method to globally resolve kine-
matic redundancy by using constrained optimization tech-
niques such as Pontryagin’s minimum principle and penalty
function methods. These methods formulated the con-
strained optimization of the redundant manipulator as a kind
of optimal redundancy control problem with inequality con-
straints. To incorporate joint limits, obstacles and joint ve-
locity limits into the formulations, state and control variable
inequality constraints were introduced, respectively.

The derived (2n+2) necessary and periodic boundary con-
ditions constitute a TPBVP. To solve this TPBVP, a two
stage algorithm was proposed, in which given initial joint
pose, optimal cost is obtained by using the steepest descent
algorithm, and the resulting joint trajectory is globally op-
timal and periodic. If the initial joint pose is not fixed, the
problem is transformed to find a global minimum of the per-
formance cost which is a function of an (n — m) dimensional
parameter vector of the self-motion manifold subject to the
initial end-effector location. This problem can be solved by
some numerical search methods, but most of cost functions
tend to be so complicated that it may be difficult to find a
global minimum if dor is more than one. As a good candi-
date for this purpose, the evolutionary programming scheme
may be considered.

To verify the effectiveness of the proposed method, a nu-
merical example was shown by using a 3-dof planar manipu-
lator with joint limits, joint velocity limits, and obstacles in
the task space.
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Figure 1: Globally optimal joint motion of 3- dof manipulator
with the given initial pose where inequality constraints are
not considered.
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Figure 2: Globally optimal joint motion of 3-dof manipulator
with the given initial pose where inequality constraints are
considered.



