• 제목/요약/키워드: period-doubling

검색결과 70건 처리시간 0.018초

Investigation of the Mechanism of Period-doubling Bifurcation in Voltage Mode Controlled Buck-Boost Converter

  • Xie, Ling-Ling;Gong, Ren-Xi;Zhuo, Hao-Ze;Wei, Jiong-Quan
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.519-526
    • /
    • 2011
  • An investigation of the mechanism of period-doubling bifurcation in a voltage mode controlled buck-boost converter operating in discontinuous conduction mode is conducted from the viewpoint of nonlinear dynamical systems. The discrete iterative model describing the dynamics of the close-loop is derived. Period-doubling bifurcation occurs at certain values of the feedback factor. Results from numerical simulations and experiments are provided to verify the evolution of perioddoubling bifurcation, and the results are consistent with the theoretical analysis. These results show that the buck-boost converters exhibit a wide range of nonlinear behavior, and the system exhibits a typical period-doubling bifurcation route to chaos under particular operating conditions.

수평 환형 공간에서의 진동하는 열대류 (OSCILLATORY THERMAL CONVECTION IN A HORIZONTAL ANNULUS)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.49-55
    • /
    • 2006
  • This study investigates the oscillatory thermal convection of a fluid with Pr=0.02 in a wide-gap horizontal annulus with constant heat flux inner wall. When Pr=0.02, dual steady-state flows are not found. After the first Hopf bifurcation from a steady to a time-periodic flow, five successive period-doubling bifurcations are recorded before chaos. The power spectrum shows the $period-2^4\;and\;2^5$ flows clearly, and a window of period $3{\times}2^3$ flow is found in the chaotic regime. The approximate value of the Feigenbaum number for the last three period-doubling bifurcations is 4.76. The transition route to chaos of the present simulations is consistent with the period-doubling route of Feigenbaum.

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

Discretization of laser model with bifurcation analysis and chaos control

  • Qamar Din;Waqas Ishaque;Iqra Maqsood;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.25-34
    • /
    • 2023
  • This paper investigates the dynamics and stability of steady states in a continuous and discrete-time single-mode laser system. By using an explicit criteria we explored the Neimark-Sacker bifurcation of the single mode continuous and discrete-time laser model at its positive equilibrium points. Moreover, we discussed the parametric conditions for the existence of period-doubling bifurcations at their positive steady states for the discrete time system. Both types of bifurcations are verified by the Lyapunov exponents, while the maximum Lyapunov ensures chaotic and complex behaviour. Furthermore, in a three-dimensional discrete-time laser model, we used a hybrid control method to control period-doubling and Neimark-Sacker bifurcation. To validate our theoretical discussion, we provide some numerical simulations.

흡수격자를 갖는 DFB 레이저의 제작 및 특성 (Fabrication and Characteristics of DFB Laser with Absorption Grating)

  • 이형종
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1990년도 제5회 파동 및 레이저 학술발표회 5th Conference on Waves and lasers 논문집 - 한국광학회
    • /
    • pp.73-78
    • /
    • 1990
  • 1.3${\mu}{\textrm}{m}$ DFB with absorption grating of 1.55${\mu}{\textrm}{m}$ InGaAsP layer was fabricated. This new type of DFB laser shows self-plusation for DC operation. At low level of injection the relation between the pulsation frequency and the injection current shows similar behavior with the relaxation oscillation of ordinary laser and at high level of injection the pulsation frequency decreases compared to the relaxation oscillation. Period doubling, period 3 and 4 were observed for AC modulation. In case of period doubling the waveform shows only one pulse within a period without any accompanying subsidiary pulses and the oscillation frequency was quite stable. The pulse widths as short as 58.5 ps was achieved with AC modulation. We propose the time division multiplexing application of this kind of DFB laser.

  • PDF

복사 열손실을 받는 대향류 확산화염의 맥동 불안정성의 비선형 거동 (Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames with Radiation Heat Loss)

  • 이수룡;박성천
    • 한국연소학회지
    • /
    • 제17권3호
    • /
    • pp.9-16
    • /
    • 2012
  • Nonlinear dynamics of pulsating instability in radiating counterflow diffusion flames is numerically investigated by imposing Damk$\ddot{o}$hler number perturbation. Stable limit-cycle solutions occur in small ranges of Damk$\ddot{o}$hler numbers past bifurcation point of instability. Period doubling cascade and chaotic behaviors appear just before dynamic extinction occurs. Nonlinear dynamics is also studied when large disturbances are imposed to flames. For weak steady flames, the dynamic extinction range shrinks as the magnitudes of disturbances are increased. However, strong steady flames can overcome relatively large disturbances, thereby the dynamic extinction range extending. Stable limit-cycle behaviors reappears prior to dynamic extinction when the steady flames are strong enough.

Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification

  • Lim, Jae-Hoon;Jung, Goo-Choong;Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1994-2003
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experimental and theoretical analysis. These kinds of studies have been performed to find the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and the coefficient of viscoelastic damping are discussed. The parameters are investigated by means of system identification so that comparisons are made between numerical analysis using the design parameters and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits, bifurcation diagram and Lyapunov exponent so that one can define optimal parameters for system design.

분기 모우드를 활용한 얇은 빔의 혼돈 역학에 관한 연구 (On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode)

  • 이영섭;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.121-128
    • /
    • 1995
  • The results are summarized as what follows: 1) The modeling of thin beams, which is a continuous system, into a two DOF system yields satisfactory results for the chaotic vibrations. 2) The concept of "natural forcing function" derived from the eigenfunction of the bifurcation mode is very useful for the natural responses of the system. 3) Among the perturbation techniques, HBM is a good estimate for the response when the geometry of motion is known. 4) It is known that there exist periodic solutions of coupled mode response for somewhat large damping and forcing amplitude, as well as weak damping and forcing. 5) The route-to-chaos related with lateral instability in thin beams is composed of period-doubling and quasiperiodic process and finally follows discontinuous period-doubling process. 6) The chaotic vibrations are verified by using Poincare maps, FFT's, time responses, trajectories in the configuration space, and the very powerful technique Lyapunov characteristics exponents.exponents.

  • PDF

시스템 규명을 통한 외팔 송수관의 비선형 동적 거동 해석 (Nonlinear Dynamic Analysis of a Cantilever Tube Conveying Fluid with System Identification)

  • 임재훈;정구충;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.495-500
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experiment and theoretical analysis. These kind of studies have often been performed that finds the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and coefficient of viscoelasticity in tube material are discussed. The parameters are investigated by means of a system identification so that comparisons are made between numerical analysis using the parameters of a handbook and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits and bifurcation diagram so that one can define optimal parameters for system design.

  • PDF

넓은 수평 환형 공간에서의 혼동 열 대류 : Pr=0.1 (Chaotic Thermal Convection in a Wide-Gap Horizontal Annulus : Pr=0.1)

  • 유주식;엄용균
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.88-95
    • /
    • 2001
  • Transition to chaotic convection is investigated for natural convection of a fluid with Pr=0.1 in a wide-gap horizontal annuls. The unsteady two-dimensional stream-function-vorticity equation is solved with finite difference method. As the Rayleigh number is increased, the steady 'downward flow' bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-doubling bifurcation occurs. As the Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. The route to chaos shows the Ruelle-Takens-Newhouse scenario. The flow of chaotic regime displays complex coalescence and separation of eddies in the side and lower region of the annulus.

  • PDF