• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.035 seconds

User-Participated Design Method for Perforated Metal Facades using Virtual Reality (가상현실 기반 사용자 참여형 타공패널 파사드 설계 방법론)

  • Jang, Do-Jin;Kim, Seongjun;Kim, Sung-Ah
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.4
    • /
    • pp.103-111
    • /
    • 2020
  • Perforated metal sheets are used as panels of facades for controlling environmental factors while ensuring user's visibility. Despite their functional potentials, only a specific direction of facades or an orientation of a building was considered in the relevant studies. This study proposed a design methodology for the perforated panel facades that reflects the location on the facades and the user's requirements. The optimization of quantitative and qualitative performance is achieved through communication between designers and users in a VR system. In optimizing quantitative performances, designers use machine learning techniques such as clustering and genetic algorithm to allocate optimal panels on the facades. In optimizing qualitative performances, through the VR system, users intervene in evaluating performances whose preferences are depending on them. The experiment using the office project showed that designers were able to make decisions based on clustering using GMM to optimize multiple quantitative performances. The gap between the target and final performance could be narrowed by limiting the types of perforated panels considering mass customization. In assessing visibility as a qualitative performance, users were able to participate in the design process using the VR system.

A Study on JFET and FLR Optimization for the Design and Fabrication of 3.3kV SiC MOSFET (3.3kV SiC MOSFET 설계 및 제작을 위한 JFET 및 FLR 최적화 연구)

  • YeHwan Kang;Hyunwoo Lee;Sang-Mo Koo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2023
  • The potential performance benefits of Silicon Carbide(SiC) MOSFETs in high power, high frequency power switching applications have been well established over the past 20 years. In the past few years, SiC MOSFET offerings have been announced by suppliers as die, discrete, module and system level products. In high-voltage SiC vertical devices, major design concerns is the edge termination and cell pitch design Field Limiting Rings(FLR) based structures are commonly used in the edge termination approaches. This study presents a comprehensive analysis of the impact of variation of FLR and JFET region on the performance of a 3.3 kV SiC MOSFET during. The improvement in MOSFET reverse bias by optimizing the field ring design and its influence on the nominal operating performance is evaluated. And, manufacturability of the optimization of the JFET region of the SiC MOSFET was also examined by investigating full-map electrical characteristics.

  • PDF

Parameter Optimization of the LC filters Based on Multiple Impact Factors for Cascaded H-bridge Dynamic Voltage Restorers

  • Chen, Guodong;Zhu, Miao;Cai, Xu
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2014
  • The cascaded H-Bridge Dynamic Voltage Restorer (DVR) is used for protecting high voltage and large capacity loads from voltage sags. The LC filter in the DVR is needed to eliminate switching ripples, which also provides an accurate tracking feature in a certain frequency range. Therefore, the parameter optimization of the LC filter is especially important. In this paper, the value range functions for the inductance and capacitance in LC filters are discussed. Then, parameter variations under different conditions of voltage sags and power factors are analyzed. In addition, an optimized design method is also proposed with the consideration of multiple impact factors. A detailed optimization procedure is presented, and its validity is demonstrated by simulation and experimental results. Both results show that the proposed method can improve the LC filter design for a cascaded H-Bridge DVR and enhance the performance of the whole system.

A Study on Endurance Test Mode Generation of Powertrain System Using Multi-Objective Optimization (다목적 최적화 기법을 이용한 동력장치의 실차 내구시험모드 생성에 관한 연구)

  • Lee, Jeonghwan;Sung, Younghwa;Lee, Byoungyong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.614-622
    • /
    • 2018
  • Based on army operating road profile, the endurance test of military vehicle aims to reproduce the similar loading conditions with mixture of proving ground tracks. It is so called as endurance test mode and its optimal generation is important to meet high reliability of endurance test. In this paper, proving ground optimization is proposed to achieve a close match to the target profile. Several performance measures such as torque-revolution counts or transmission ratio for the powertrain system can be considered as one of the objective functions. However, the one-side optimal endurance test mode may give the poor solution in the whole system point of view. To incorporate several goals simultaneously, this paper employs multi-objective optimization technique to generate endurance test mode. One of the most widely used method, weighted-sum method is applied here and the case study is discussed.

Thermal Unit Commitment Using Binary Differential Evolution

  • Jeong, Yun-Won;Lee, Woo-Nam;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.323-329
    • /
    • 2009
  • This paper presents a new approach for thermal unit commitment (UC) using a differential evolution (DE) algorithm. DE is an effective, robust, and simple global optimization algorithm which only has a few control parameters and has been successfully applied to a wide range of optimization problems. However, the standard DE cannot be applied to binary optimization problems such as UC problems since it is restricted to continuous-valued spaces. This paper proposes binary differential evolution (BDE), which enables the DE to operate in binary spaces and applies the proposed BDE to UC problems. Furthermore, this paper includes heuristic-based constraint treatment techniques to deal with the minimum up/down time and spinning reserve constraints in UC problems. Since excessive spinning reserves can incur high operation costs, the unit de-commitment strategy is also introduced to improve the solution quality. To demonstrate the performance of the proposed BDE, it is applied to largescale power systems of up to 100-units with a 24-hour demand horizon.

Optimal Design of MR Shock Absorbers Using Finite Element Method (유한요소법을 이용한 MR 쇽 업소버의 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.375-380
    • /
    • 2007
  • This paper presents optimal design of controllable magnetorheological (MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method (FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

  • PDF

Topology Design Optimization of Nonlinear Thermo-elastic Structures (비선형 열탄성 연성구조의 위상 최적설계)

  • Moon, Min-Yeong;Jang, Hong-Lae;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.535-541
    • /
    • 2010
  • In this paper, we have derived a continuum-based adjoint design sensitivity of general performance functionals with respect to Young' modulus and heat conduction coefficient for steady-state nonlinear thermoelastic problems. An adjoint equation for temperature and displacement fields is defined for the efficient computation of the coupled field design sensitivity. Through numerical examples, we investigated the mesh dependency of the topology optimization method in the thermoelastic problems. Also, comparing the dominant loading cases of thermal and mechanical ones, the loading dependency of topology design optimization in coupled multi-physics problems is investigated.

A Novel Efficiency Optimization Control of SynRM Considering Iron Loss with Neural Network (신경회로망에 의한 철손을 고려한 SynRM의 새로운 효율 최적화 제어)

  • Kang, Sung-Joon;Ko, Jae-Sub;Choi, Jung-Sik;Baek, Jung-Woo;Jang, Mi-Geum;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.776_777
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using neural network(NN). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. The design of the speed controller based on adaptive learning mechanism fuzzy-neural networks(ALM-FNN) controller that is implemented using fuzzy control and neural networks. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Field Circuit Coupling Optimization Design of the Main Electromagnetic Parameters of Permanent Magnet Synchronous Motor

  • Zhou, Guang-Xu;Tang, Ren-Yuan;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.88-93
    • /
    • 2008
  • The electromagnetic parameters of a permanent magnet synchronous motor (PMSM) such as the open load permanent magnet flux, d axis reactance $X_d$, and q axis reactance $X_q$, are most essential to the performance analysis and optimization design of the motor. Based on the numerical analysis of the 3D electromagnetic field, the three electromagnetic parameters of permanent magnet synchronous motors with U form interior rotor structures are calculated by FEA. The rules of the leakage coefficient and reactance parameters changing with the air gap length, permanent magnet magnetism length, and isolation magnetic bridge dimensions in the rotor are given. The calculated values agree well with the measured values. The FEA results are integrated with the self compiled electromagnetic design program to optimize the prototype motor. The tested performances of the prototype motor prove that the method is suitable for the optimization of motor structure.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.