• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.032 seconds

DEVELOPMENT OF A RESOURCE LEVELING MODEL USING OPTIMIZATION

  • Jin-Lee Kim;Ralph D. Ellis
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.558-563
    • /
    • 2005
  • This paper presents a GA-based optimal algorithm for a resource leveling model that levels the resources of a set of non-critical activities experiencing conflicts simultaneously up to an assumed level of resource rates specified by the planner using a pair-wise comparison of the activities being considered. A parameter called the future float is adopted and applied as an indicator for assigning leveling priorities to the sets of activities experiencing conflicts. A construction project network example was worked out to demonstrate the performance of the proposed method. The histogram obtained using the algorithm proposed was shown to be the same as, or very close to that produced by the existing resource leveling method based on the least total float rule, which shifts non-critical activities individually.

  • PDF

Multi-objective production scheduling of precast concrete based on reinforcement learning

  • Leting ZU;Wenzhu LIAO
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.56-62
    • /
    • 2024
  • To enhance energy efficiency and reduce emissions in prefabricated construction, optimizing the production scheduling of precast concrete is considered an effective approach. Due to the unique characteristics of precast concrete during production, traditional scheduling models are no longer applicable. This present study introduces practical considerations, such as a limited number of molds, buffers, uncertainty of order arrivals and vehicles. Furthermore, to meet the requirements of contemporary industrial development, a mulit-objective optimization scheduling model is formulated by integrating total processing time, on-time delivery rate and work station idle time. A solution based on reinforcement learning algorithm is devised. Results indicate that this method can effectively undergo training and achieve outstanding performance in addressing such issues. The model has the potential to significantly reduce decision-making time in precast production, thereby contributing to the sustainable development of prefabricated construction.

Noisy Image Segmentation via Swarm-based Possibilistic C-means

  • Yu, Jeongmin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.35-41
    • /
    • 2018
  • In this paper, we propose a swarm-based possibilistic c-means(PCM) algorithm in order to overcome the problems of PCM, which are sensitiveness of clustering performance due to initial cluster center's values and producing coincident or close clusters. To settle the former problem of PCM, we adopt a swam-based global optimization method which can be provided the optimal initial cluster centers. Furthermore, to settle the latter problem of PCM, we design an adaptive thresholding model based on the optimized cluster centers that yields preliminary clustered and un-clustered dataset. The preliminary clustered dataset plays a role of preventing coincident or close clusters and the un-clustered dataset is lastly clustered by PCM. From the experiment, the proposed method obtains a better performance than other PCM algorithms on a simulated magnetic resonance(MR) brain image dataset which is corrupted by various noises and bias-fields.

New Optimization Algorithm for Data Clustering (최적화에 기반 한 데이터 클러스터링 알고리즘)

  • Kim, Ju-Mi
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.3
    • /
    • pp.31-45
    • /
    • 2007
  • Large data handling is one of critical issues that the data mining community faces. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving large data handling, but a pervasive problem with this approach is how to deal with the noise in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithm specifically designed for noisy performance. Numerical results show this algorithm better than the other algorithms such as PAM and CLARA. Also with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality using partial data.

  • PDF

Optimum design of reinforced concrete columns subjected to uniaxial flexural compression

  • Bordignon, R.;Kripka, M.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.327-340
    • /
    • 2012
  • The search for a design that meets both performance and safety, with minimal cost and lesser environmental impact was always the goal of structural engineers. In general, the design of conventional reinforced concrete structures is an iterative process based on rules of thumb established from the personal experience and intuition of the designer. However, such procedure makes the design process exhaustive and only occasionally leads to the best solution. In such context, this work presents the development and implementation of a mathematical formulation for obtaining optimal sections of reinforced concrete columns subjected to uniaxial flexural compression, based on the verification of strength proposed by the Brazilian standard NBR 6118 (ABNT 2007). To minimize the cost of the reinforced concrete columns, the Simulated Annealing optimization method was used, in which the amount and diameters of the reinforcement bars and the dimensions of the columns cross sections were considered as discrete variables. The results obtained were compared to those obtained from the conventional design procedure and other optimization methods, in an attempt to verify the influence of resistance class, variations in the magnitudes of bending moment and axial force, and material costs on the optimal design of reinforced concrete columns subjected to uniaxial flexural compression.

Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations

  • Hadidi, Ali;Azar, Bahman Farahmand;Rafiee, Amin
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.701-721
    • /
    • 2016
  • Base isolation is a well-established passive strategy for seismic response control of buildings. In this paper, an efficient framework is proposed for reliability-based design optimization (RBDO) of isolated buildings subjected to uncertain earthquakes. The framework uses reduced function evaluations method, as an efficient tool for structural reliability analysis, and an efficient optimization algorithm for optimal structural design. The probability of failure is calculated considering excessive base displacement, superstructure inter-storey drifts, member stress ratios and absolute accelerations of floors of the isolated building as failure events. The behavior of rubber bearing isolators is modeled using nonlinear hysteretic model and the variability of future earthquakes is modeled by applying a probabilistic approach. The effects of pulse component of stochastic near-fault ground motions, fixity-factor of semi-rigid beam-to-column connections, values of isolator parameters, earthquake magnitude and epicentral distance on the performance and safety of semi-rigidly connected base-isolated steel framed buildings are studied. Suitable RBDO examples are solved to illustrate the results of investigations.

HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery (운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

Shape Design of Micro Electrostatic Actuator using Multidimensional Design Windows (다차원 설계윈도우 탐색법을 이용한 마이크로 액추에이터 형상설계)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Daisuke Ishihara;Yoshimura, Shinobu;Yagawa, Genki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1796-1801
    • /
    • 2001
  • For micro-machines, very few design methodologies based on optimization hale been developed so far. To overcome the difficulties of design optimization of micro-machines, the search method for multi-dimensional design window (DW)s is proposed. The proposed method is defined as areas of satisfactory design solutions in a design parameter space, using both continuous evolutionary algorithms (CEA) and the modified K-means clustering algorithm . To demonstrate practical performance of the proposed method, it was applied to an optimal shape design of micro electrostatic actuator of optical memory. The shape design problem has 5 design parameters and 5 objective functions, and finally shows 4 specific design shapes and design characters based on the proposed DWs.

PSO-Based Optimal PI(D) Controller Design for Brushless DC Motor Speed Control with Back EMF Detection

  • Kiree, Chookiat;Kumpanya, Danupon;Tunyasrirut, Satean;Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.715-723
    • /
    • 2016
  • This paper proposes a design of optimal PI(D) controller for brushless DC (BLDC) motor speed control by the particle swarm optimization (PSO), one of the powerful metaheuristic optimization search techniques. The proposed control system is implemented on the TMS320F28335 DSP board interfacing to MATLAB/SIMULINK. With Back EMF detection, the proposed system is considered as a class of sensorless control. This scheme leads to the speed adjustment of the BLDC motor by PWM. In this work, the BLDC motor of 100 watt is conducted to investigate the control performance. As results, it was found that the speed response of BLDC motor can be regulated at the operating speed of 800 and 1200 rpm in both no load and full load conditions. Very satisfactory responses of the BLDC system can be successfully achieved by the proposed control structure and PSO-based design approach.

The Efficient Sensitivity Analysis on Statistical Moments and Probability Constraints in Robust Optimal Design (강건 최적설계에서 통계적 모멘트와 확률 제한조건에 대한 효율적인 민감도 해석)

  • Huh, Jae-Sung;Kwak, Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • The efforts of reflecting the system's uncertainties in design step have been made and robust optimization or reliability-based design optimization are examples of the most famous methodologies. In their formulation, the mean and standard deviation of a performance function and constraints expressed by probability conditions are involved. Therefore, it is essential to effectively and accurately calculate them and, in addition, the sensitivity results are required to obtain when the nonlinear programming is utilized during optimization process. We aim to obtain the new and efficient sensitivity formulation, which is based on integral form, on statistical moments such as the mean and standard deviation, and probability constraints. It does not require the additional functional calculation when statistical moments and failure or satisfaction probabilities are already obtained at a design point. Moreover, some numerical examples have been calculated and compared with the exact solution or the results of Monte Carlo Simulation method. The results seem to be very satisfactory.