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Large data handling is one of critical issues that the data mining community faces. This is
particularly true for computationally intense tasks such as data clustering. Random sampling of
instances is one possible means of achieving large data handling, but a pervasive problem with this
approach is how to deal with the noise in the evaluation of the learning algorithm. This paper
develops a new optimization based clustering approach using an algorithm specifically designed for
noisy performance. Numerical results show this algorithm better than the other algorithms such as
PAM and CLARA. Also with this algorithm substantial benefits can be achieved in terms of
computational time without sacrificing solution quality using partial data.
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1. Introduction

and knowledge discovery can also be formulated

as optimization problems, and optimization tech-

In recent years databases in modem enter- niques can therefore be used to solve large-scale

prises have become massive and contain a wealth data mining problems (Basu, 1998; Bradley et al,

of important data. However when traditional
methods of analysis fall short in transforming this
data into knowledge, exploratory techniques such
as knowledge discovery in databases must be
applied. This multidisciplinary field of data min-
ing draws heavily on statistics and artificial in-

telligence, but numerous problems in data mining

1999).

As the importance of data mining has
grown, one of the critical issues to emerge is how
to scale data mining techniques to larger data-
bases (Bradley et al., 2002). This is particularly
true for computationally intensive data mining

tasks such as identifying natural clusters of in-
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stances (Kaufman and Rousseeuw, 1990). Several
approaches to scalability enhancements have been
studied at length in the literature (Provost and
Kolluri, 1999), including using parallel mining al-
gorithms (Forman and Zhang, 2000) and pre-
processing the data by filtering out redundant or
irrelevant features and thus reducing the di-
mensionality of the database (Olafsson, 2003).
Another approach to better scalability is using a
selection of instance from a database rather than
the entire database (Liu and Motoda, 2001). This
paper deals with such instance selection and how
it can be applied to data clustering within an opti-
mization-based framework.

Perhaps the simplest approach to instance
selection is random sampling (Kiven and Mannila,
1994). Numerous authors have studied this ap-
proach for specific data mining tasks such as clus-
tering (Kaufman and Rousseeuw, 1990 ; Ng and
Han, 1994, Ester, elt al., 1995), association rule
discovery (Toivonen, 1996), and decision tree in-
duction (Chauchat and Rakotomalala, 2001). When
this approach is implemented the most challeng-
ing issue is determining a sample size that im-
proves the performance of the algorithm without
sacrificing the solution quality. Bounds can be de-
veloped that allow for a prediction of sample ef-
fort needed, but such bounds usually require
knowing certain problem parameters and typically
overestimate the necessary sample size (Toivonen,
1996). On the other hand, too small sample will
lead to a bias and degeneration in performance.
One possible solution is to use adaptive sampling
(Domingo et al., 2002 ; Provost et al,, 1999).
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In this paper we advocate an alternative ap-
proach that is based on a novel formulation of
the clustering task as an optimization problem.
We also take advantage of the fact that certain
optimization techniques have been explicitly de-
signed to account for noisy performance esti-
mates, which are common when performance is
estimated using simulation. In particular, one such
method is the nested partitions method that can
be used to solve general global optimization prob-
lems (Shi and Olafsson, 2000) and specifically
combinatorial type optimization problems with
noisy performance (Olafsson, 1999). A character-
istic of this method is that wrong moves made
due to noise in performance estimates can be au-
tomatically corrected in a later move. In the scal-
able clustering context this means that noisy per-
formance estimates, resulting from smaller sam-
ples of instance, may result in more steps taken
by the algorithm but any bias will be automati-
cally corrected. This eliminates the need to de-
termine the exact sample size, although the com-
putational performance of the algorithm may still
depend on some extent on how it is selected.

The remainder of this paper is organized as
follows. In Section 2 we briefly review clustering
techniques and in particular, focus on efforts in
scalable clustering. In Section 3 we discuss the
basis for the new clustering methodology, which
is an optimization method called the Nested
Partitions method, present the optimization-based
clustering algorithm which is called NPCLUSTER
algorithm and demonstrate its effectiveness on a

sample problem. In Section 4 we present some
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numerical results of the scalability of the algo-
rithm with respect to the instance dimension, and
Section 5 contains concluding remarks and sug-

gestions for future research directions.

2. Scalable Clustering

Clustering has been an active area of re-
search for several decades, and many clustering
algorithms have been proposed in the literature
(Kaufman and Rousseeuw, 1990; Grabmeier and
Rudolph, 2002; Yim and Oh, 2003). In particular,
considerable research has been devoted specifi-
cally to scalable clustering. We will start by brief-
ly describing the various types of clustering algo-
rithms and then mention some specific scalable
methods.

Clustering algorithms can be roughly div-
ided into two categories: hierarchical clustering
and partitional clustering (Jain, et al., 1999). In
hierarchical clustering all of the instances are or-
ganized into a hierarchy that describes the degree
of similarity between those instances (e.g., a den-
drogram). Such representation may provide a
great deal of information, but the scalability of
this approach is questionable as the number of in-
stances grows. Partitional clustering, on the other
hand, simply creates one partition of the data
where each instance falls into one cluster. Thus,
less information is obtained but the ability to deal
with a large number of instances is improved.
Examples of the partitioning approach are the
classic k-means and k-medoids clustering algorithms.

There are many other characteristics of
clustering algorithms that must be considered to
ensure scalability of the approach. For example,
most clustering algorithms are polythetic, mean-
ing that all features are considered simultaneously
in tasks so as to determine the similarity of two
instances. However, as the number of features be-
comes high this may pose scalability problems
and it may be necessary to restrict attention to
monothetic clustering algorithms that consider
one feature at a time. Most clustering algorithms
are also non-incremental in the sense that all of
the instances are considered simultaneously.

However, there are a few algorithms that
are incremental, which implies that they consider
each instance separately. Such algorithms are par-
ticularly useful when the number of instances is
large.

Scalable clustering has received consid-
erable attention in recent years, and here we will
mention only a few of the methods that have been
developed. For example, Zhang et al., (1996) pro-
posed BIRCH, a hierarchical algorithm for clus-
tering. The key idea of this method is to summa-
rize cluster representations using two innovative
concepts, clustering feature and clustering feature
tree.

Another approach to hierarchical clustering
is the CURE algorithm developed by Guha et al,,
(1998). The steps of the CURE algorithm follow-
ings; obtain a sample from the original database,
partition the sample into a set of partitions and
then cluster each partition, eliminate outliers and

cluster the partial clusters. Finally, each data in-
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stance is labeled with the corresponding cluster.

Improved scalable versions of partitioning
methods such as k-means and k-medoids have also
been developed. The Clustering LARge Applications
(CLARA) algorithm improves the scalability of
the PAM k-medoids algorithm by applying PAM
to multiple samples of the actual data and returns
the best clustering (Kaufiman and Rousseeuw, 1990).

A single pass k-means clustering algorithm
was proposed by Bradley et al., (1998), with the
main idea to use a buffer to save points from the
database in a compressed form. This approach
was simplified in the algorithm proposed by
Farnstrom et al., (2000), in an effort to reduce
the overhead that otherwise might cancel out any
scalability improvements that might be achieved.

Yet another way of improving scalability is
via distributed clustering, where instead of combin-
ing all data before clustering, data sets are operated
on independently with minimum communication
between the parallel clustering algorithms (Forman
and Zhang, 2000).

The work presented in this paper is a parti-
tional clustering algorithm that attempts to find
cluster centers and uses random sampling to im-
prove scalability. In that sense, it is the most similar
to the CLARA algorithm, but its optimization-based
approach sets it apart.

3. Optimization-Based Clustering

3.1 The NP-Method

The nested partitions (NP) method is an op-
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timization method that has been suggested by Shi
and Olafsson (2000) to solve general global opti-
mization problems of the following form:

min - f(x) (1)

x€X

where xis a point in a n-dimensional space
X and f:X—R is a real-valued performance
measure defined on this space. This performance
may or may not be known deterministic. In our
context, X is the space of all clusters and meas-
ures some quality of the clusters.

The mtuitive idea of the NP method is quite
simple. In each step, the method systematically
partitions the feasible region into subsets and fo-
cuses the computational effort in those subsets
that are considered promising. The main compo-
nents of the method are :

* Partitioning : at each iteration the feasible re-
gion is partitioned into subsets that cover the
feasible region but concentrate the search in
what is believed to be the most promising
region.

* Random sampling : to evaluate each of the sub-
sets, a random sample of solutions are obtained
from each subset and used to estimate the per-

formance of the region as a whole.

This method can be understood as an opti-
mization framework that combines adaptive glob-
al sampling with local heuristic search. It uses a
flexible partitioning method to divide the design
space into regions that can be analyzed in-
dividually and then aggregates the results from

each region to determine how to continue the
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search, that is, to concentrate on the computa-
tional effort. Thus, the NP method adaptively
samples from the entire design space and concen-
trates on the sampling effort by systematic parti-
tioning of the design space.

To implement the partitioning, the NP
method maintains in the kth iteration what is
called the most promising region, that is, a sub-
region X(k) = X that is considered the most like-
ly to contain the best solution. This most promis-
ing region is partitioned into a given number of
subregions and what remains is aggregated into
one region called the surrounding region. Thus,
a disjoint collection of sets covering the entire
feasible region is considered. The subregions and
the surrounding region are sampled using random
sampling, and the sampling information used to
determine which region should be the most prom-
ising region in the next iteration. If one of the

subregions contains the best solution, this region

is now selected as the new most promising region

and is, in the next iteration, partitioned into small-
er subregions. If the surrounding region contains
the best solution this is taken as an indication that
the last move might not have been the best move,
so the algorithm backtracks to what was the most
promising region in the previous iteration. This
partitioning creates a tree of subsets that we refer
to as the partitioning tree.

3.2 Defining Clusters

The partitional clustering problem can be

formulated as an optimization problem and thus

solved within the NP framework. In particular, we
have designed the NP method as a partitional
clustering method for nominal data and in-
corporated k-means into the same framework. In
this approach we assume that we want to partition
a given data set into m clusters and that each clus-
ters is defined by its center (each instance is as-
signed to the closest center). The decision varia-
bles are thus the i-th coordinate of the j-th cluster,
where 1 =1,2,---,n, j=1, 2,---, m. Therefore, this
clustering problem reduces to locating the centers
to optimize certain performance.

Selecting a performance measure to be opti-
mized is very subjective, since determining what
constitutes a good cluster is necessarily subjective
and no single standard exists. We refer the reader
to Estivill-Castro (2002) for a recent discussion
of this issue and Grabmeyer and Rudolph (2002)
for a more extensive survey. The most common
measures are probably to maximize similarity
within a cluster (that is, maximize homogeneity
or compactness), and to minimize similarity be-
tween different clusters (that is, maximize separa-
bility between the clusters). A particular strength
of the optimization-based framework is that any
such measure, or combination of measures, can
be adopted. Indeed, the function f can be defined
as any measure of what is believed to indicate
the quality of a cluster.

To minimize bias that may be introduced
by analyzing very specific perfonmance measures,
we restrict ourselves here to a single measure of
similarity within cluster, namely, its compactness :

=33
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Here © is the space of all instances, y/€6
is a specific instance in the space, x is the cluster

center to which the instance is assigned, where

yi—z ['is the difference between a data point the
v/ and cluster center z;. So the objective function
is an indicator of the distance of n data points
from their respective cluster centers.

We believe that by using such a simple
measure we are better able to focus on the per-
formance of the algorithm itself. For a particular
application, however, this will without doubt be
defined in a different fashion, but that will not
change the implementation of the algorithm.

3.3 Partitioning

The main implementation issue for apply-
ing NP is to define the partitioning. We suggest
doing this by finding cluster centers for one fea-
ture at a time, that is, at each level of the partition-
ing tree the values for all centers are limited to
a given range for one feature. This defines the
subsets or regions that form the partitioning tree.
Then, as for the generic NP method, random sam-
ples are obtained from each subset, and to speed
convergence, the k-means algorithm is applied to
those random samples and the resulting improved
centers used to select the most promising region.
This most promising region is partitioned further,
the surrounding region is aggregated, and so forth.

To help clear understanding, let’s see the
simple example. To present a detail description,
implementation of the NPCLUSTER method we

need the following notation :
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e : The space of all instances

o(k) : The most promising region in the k-th
iteration

~  :{o < Olo is a valid region given a

fixed partitioning }
% {o< Xlo is a maximum depth }
s(o) : The super-region of cEX

d(o) : Depth of region o

d : Maximum depth
m : Total number of clusters(given)
n : Total number of features(given)

[Figure 1] shows simple example for clus-
tering using NP methodology. This is nominal
problem with two dimensions. The total number

of cluster is 2.

Number of Clusters = 2
@
® ® ©
o e © o
© °
) @
@

N

[Figure 1] Simple Example for Clustering
using NP methodology

Seeds

To simplify the problem, it is assumed each
dimension has only two values. That is, z; =
{1, 2},i=1, 2. [Figure 2] and 3 demonstrates a
partitioning tree where all features can take two
different values and the problem is to find the opti-

mal location of m =2 clusters (identified as C,
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and (). This partitioning approach helps with
the scalability of the method with respect to the
feature dimension. It focuses on fixing one feature
at a time and is in that sense monothetic, but not
fully so as all features are randomly assigned val-
ues during the random sampling stage, and thus
all features are used simultaneously to select
subregions. This approach can thus be thought of
as having elements of both monothetic and polythetic
clustering.

It is also important to note that the partition-
ing tree imposes a structure on the space of all
possible clusters, and thus determines the effi-
ciency of the search through this space. Furthermore, in-
vestigating effective methods for ordering fea-
tures is an important future research topic.

[Figure 2] show initial partitioning. In the

first subset, 1% dimension of each cluster are set

s(s(2))

Most promising region

o(2)

l Random Samples

Ci(2,1), Gy(2,2) f(o%) =7

64(2)) = 10.7

Ci(1,2), G(2,2) f(62) =11
Ci(1,1), Cy(2,1) F(6%) =14

as (1, 1). In the second subset, 1* dimension of
each cluster are set as (1, 2). In the third subset,
1" dimension of each cluster are set as (2, 2).

After partitioning three subsets, random
sampling is applied. For example, for the first
subset, every sample point of this subset has a
fixed first dimension; the first cluster and the sec-
ond cluster are fixed as 1. For the remaining di-
mension, centers can be randomly assigned from
the values {1, 2}. Using the sampling from each
subset, a similarity value is calculated by for-
mulation (2).

Based on these values, the promising index
is calculated for each subset. After calculating
promising index for all subsets, the most promis-
ing region is the 1% subset because it has the
smallest promising index.

[Figure 3] shows that 1% iteration and the
most promising index is 1* subset. The partition-
ing of the 2™ iteration starts from the 1% subset.
Because the 2™ dimension can take 2 different
values, three different subsets can be obtained like

in the 1% iteration. Also, the 2™ iteration is the

s(o(1))

l Random Samples

G (1,1), G,(1,2) (o) =235
C(1,2), G(1,2) f(8%) =11 Promising Index
C(1,1), G(1,1) £(68) =212 —e—3[(,(1)) = 18.6

Best Promising Index

[Figure 2] 1% iteration of the example [Figure 3] 2™ iteration of the example
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maximum depth because there are two dimensions
in this problem. From the 2™ iteration, there is
one more subset which is called the surrounding
region. The subset which contains center
(G,(1,+),Gy(2,+))in [Figure 3] is surrounding
region. After sampling from all subsets, the most
promising index is found in the second region,
having the 1st cluster’s coordinate (1, 1) and the
2" cluster’s coordinate (1, 2). These coordinates
are optimal that minimize the similarity of the

problem.

3.4 NPCLUSTER Algorithm

NPCLUSTER Algorithm is modified al-
gorithm for data clustering from NP method
which guarantees to global convergence (Shi and
Olafsson, 2000). So, NPCLUSTER also converges
to the global optimum.

« NPCLUSTER Algorithm

Step 1: Initialization
Set k=0 and o(k)=6.
Step 2 : Partitioning
If d(o(k)) = d', that is o(k) = X, parti-
tion the most promising region o(k), into M,
sub-regions o, (k), - ,0,,(k), and aggregate the sur-
rounding region © \ o (k) into one region oy, 1, (k).
if d(o(k)) =d’, then let M, =1 and
o0y (k) =al(k).
Step 3 : Random Sampling
Step 3-1:Let 1 =1.
Step 3-2: K-means Algorithm
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Assign imstances using random sampling
to the cluster center and calculate per-
formance value which is mentioned in
(2). Repeat this, until the centers no
longer move for each of the regions,
o;(k), §=1,2,-, M4y +1
Step 3-3 : If i =n,, continue to Step 4. Otherwise,
let i=:+1 and go back to Step 3~2.
Through the K-means Algorithm,
from each of the region, repeatedly
obtain n, sample sets, that is 61,
¢, , 8™, from each of the regions,
o;(k), j=1,2,-, M,y +1 according to
the distribution, and calculate the corre-
sponding performance values which is
mentioned in (2)
FOM), £(7),, F(O™).
Step 4 : Estimating the Promising Index
Let the overall sample mean be the

promising index for all subregions,

j:17 27'"7%();)_*’17

(oK) = (k) = {2, £ (7 (k) /nq
Step 5 : Backtracking

Select the index of the region with the

best promising index,

- min -
JiEarg je{l’...,m(k)+1}1(aj)

for all j=1,2, -, M, +1.

If more than one region is equally pro-
mising, the tie can be broken arbitrarily.
If this index corresponds to a region that
is a sub-region, o(k), then let this be

the most promising region in the next
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iterations. Otherwise, if the index corre-
sponds to the swrrounding region, back-
track to a larger region containing the
current most promising region. That is,
let
o (k),
s(o(k)),
Step 6 : Checking Stopping Rule
Ifok+1)ex,, stopand let o,, =o(k+1)
else k=k+1 and go back to Step 2.

if j < M+1
otherwise

U(k+1)={

3.5 Numerical Evaluation

To evaluate the effectiveness of the
NPCLUSTER, we compare it with the PAM algo-
rithm, which is a variant of the k-medoids ap-
proach (Kaufman and Rousseeuw, 1990), and
CLARA, its more scalable variation.

The motivation for the selection of these algo-
rithirs for comparison is that like NPCLUSTER, these
algorithms use a partitional approach to identify
cluster centers and employ a random sampling
strategy to improve scalability.

We use three realistic data sets from the
UCI repository of machine learning databases
(Blake and Merz, 1998). The characteristics of

these sets are shown in <Table 1>, from which

we note that the sizes ranges from 286 to 958
instances and from 9 to 10 features. We ran 60
replications for each experiment and report both
similarity value with average and standard error

and computation time.

<Table 1> Characteristics of the Tested Data Sets

Data Set Instances Features
Breast cancer 286 9
Wisconsin Breast Cancer 699 10
Tic-Tac-Toe 958 g

The quantity of the clusters. ie. computation
time is used complexity, real calculation number.
And the quality of the clusters obtained is meas-
ured by the compactness or similarity value of
the clusters which is defined in (2). The smaller
this value is, the better the clustering becomes.
We note that although PAM has the best perform-
ance in terms of similarity values, it comes at
a very high computation cost. By using sampling
in case of NPCLUSTER and CLARA, the compu-
tation time can be reduced by two orders of
magnitude. The CLARA algorithm, on the other
hand, uses the least computation time for three
data sets but the quality of the clusters is not sat-
isfactory compared to the other methods.

The ability of the NPCLUSTER method to

<Table 2> Comparison of Algorithms for Similarity Value and Computation Time

NPCLUSTER PAM CLARA
Data Set Similarity { Computation | Similarity | Computation | Similarity | Computation
Value Time Value Time Value Time
Breast Cancer 13023 + 13 08 - 10° 978 + 2 19.2 - 10° 1971 = 21 08 - 10°
Wisconsin Breast Cancer | 4259.0 + 46 39-10° 3166 + 05 1026 - 10° 5026 + 54 17 -16°
Tic-Tac-Toe 5130 + 7.2 74-10° 4025 + 57 194.3 - 10° 7106 + 64 18- 10°
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use sampling and still obtain high quality solution
stems from the fact that when an incorrect move
is made in the partitioning tree, it can be corrected
in the next (or a later) iteration, when a new sam-
ple of instances indicates that this was the wrong
move. Thus, if there is a large amount of noise
in the performance estimates (i.e., a small sample
of instance is used), then the algorithm may back-
track frequently. Frequent backtracking implies
more iterations, and thus increases computation
time so there is a tradeoff between fast computa-
tion in each iteration and more iterations needed
when reducing the instance sample size.
However, we note that the NPCLUSTER algo-
rithm achieves this balance in an automated

manner.

<Table 3> Numerical Results for Different
Percentage of instances Used

. Similarity | Computation
Data | Fractio Value Time
Set n

Backtracking

Avg. * SE.| Avg. + SEE. | Avg. = S.E.
100% | 13023 + 13 | 84115 + 3166 | 072 + 005
50% | 12766 * 15 | 27295 * 901 | 0.30 * 007
25% | 13229 * 12 | 25699 * 689 | 056 * 0.19
5% | 13631 13| 27698 + 960 | 0.44 * 0.12
05% | 14309 + 12 | 33773 + 1203 { 0.34 + 0.08
100% | 42590 + 46 | 394777 + 6668 | 0.14 + 005
Wiscon | 50% | 42077 101666 + 1352 | 0.08 + 0.04
Brs;gst 25% | 42647 + 51 | 43794 * 498 | 008 * 0.04
Cancer [ 5% | 43634 + 41 | 38966 + 590 | 0.10 + 0.05

05% | 4401.1 + 49 | 44065 + 775 | 0.14 + 006
100% | 5130 + 72 | 745181 * 4935 0,00 * 000
50% | 5278 + 8.4 | 191796 + 1718 0.00 + 0.00
5267 + 113 | 59501 + 443 | 0.00 * 0.00
14514 ¢ 21 | 000 * 0,00
14975 + 20 | 0.00 + 0.00

Breast
Cancer

e
&

Tic-
Tac- 25%
Toe

5% 5351 *+ 166

05% | 5812 + 460
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4. Numerical Results of Instance subset

As has been noted above, repeated calcu-
lation of cluster performance according to (2) is
time consuming and a more scalable approach is

to use an estimate
FGW, x® W) ©)

that is calculated from a (small) subset |
of the set of all instances. The key questions to
be answered is how much savings in computation
time can be achieved by using this estimate, what
is the best sample size }I|, and how sensitive the
clustering algorithm performance is to this sample
size.

To obtain some tentative answers to these
questions and to demonstrate feasibility for the
scalability improvements that are possible by us-
ing sampling, we apply the NPCLUSTER method
described above to the same three data sets as
before. The numerical results are reported in
<Table 3>, which shows the solution quality
(similarity value), computation time, and average
amount of backtracks for varying amounts of
sampling. These results clearly indicate that ran-
dom sampling can be effectively used to achieve
substantial computational benefits without sacri-
ficing solution quality. We recall that here sol-
ution quality is defined by equation (2) as being
a measure of within cluster similarity that is the
sum of the deviation of instances from the cluster
center of the cluster to which they are assigned.

For example, using 25% of the Breast
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Cancel data set reduces the computation time by
69% while the similarity only increases by 2%
and is within two standard deviations of the value
without sampling. Similarly for the Breast Cancel
data set, by using 5% of the instances in each step,
computational time can be reduced, by 90% while
similarity value is only increased by 2 percent.
Similar results can get from Tic-Tac-Toe data set.
Computation time reduction is 98% while sim-
ilarity value increase is 4%.

Furthermore, the performance is not very
sensitive to exact selection of an amount of sampling.
For example, for both problems (Breast Cancer
and Wisconsin Breast Cancer) the performance
when 5% of instances is used is very similar to
the performance when 25% of instances is used.
In case of Tic-Tac-Toe, more larger data set, same
thing happens between 5% of instances and 0.5%
of instances. Thus, the iterative nature and auto-
matic backtracking feature of the NPCLUSTER
algorithm allow us to achieve significant compu-
tational improvements without exact calibration
of how many instances are needed. And this is
more effective in case of large data set

We also note that the variability of the per-
formance (as measured by the standard error re-
ported in <Table 3>) is stable. This is somewhat
surprising as one might expect that dealing with
the noisier sets corresponding to a small sample
of the original data might give rise to higher
variability. The fact that such an increase is not
observed is an indication that the NPCLUSTER
is very effective in dealing with such uncertainty.

There is, on the other hand, a significant

<Table 4> Estimated Coefficient of variation

Fraction cv
100% 169 - 107
50% 1.33 - 107
25% 114 - 16
5% 151 - 107
05% 176 - 102

observed change in the variability of the comput-
ing time. For both test problems (Breast Cancer
and Wisconsin Breast Cancer), the computation
time is the least for when using 25% of the
database. The reduction in variability is not, how-
ever, solely explained by the shorter computation
time as the estimated coefficient of variation
(standard error divided by the average) shows a
similar pattern. For example, for the Wisconsin
Breast Cancer data the estimated coefficient of
variation is shown in <Table 4> Thus, we con-
clude that sampling does not only reduce the com-
putation time, but the computation time is more
stable when the sample size is selected appropriately.

5. Conclusions and Future Research

Clustering is one of the most important
areas of knowledge discovery in databases, and
the use of optimization techniques for clustering
offers considerable promise. The scalability of
such techniques is one of the key issues to be ad-
dressed as the field progresses. In particular, scal-
ability with respect to increasing number of in-
stances is critical as databases become ever larger.

One way of dealing with this issue is to use a
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subset of all instances for the learning algorithm.
The obvious tradeoff is between computational is-
sues, where fewer instances imply faster learning,
and solution quality, where using fewer instances
may imply lower quality models.

We have designed an optimization bases
approach to the partitional clustering problem
where the algorithm is specifically designed to
deal with noisy performance estimates, such as
those that arise when only part of the data is used
to create clusters. Numerical results show that
considerable speedup can be achieved (up to 90%
for the numerical examples) with no or minimal
reduction in solution quality. Also, the algorithm
is robust with respect to the amount of instances
used so there is no need to carefully determine
the fraction of the database that needs to be used.

There are numerous issues that should be
addressed for further development of this meth-
odology. For example, an extensive numerical
evaluation on a variety of realistic and synthetic
problems should be performed, relating the com-
putational speedup to characteristics of the data,
and developing heuristic for specifying amount of
instances to be used and evaluating their rob-
ustness. Especially, large data should be evaluated
to rdbust scalability.

As noted in Section 3.3 above, determining
intelligent ways of ordering the features is also
a critical issue. The partitioning tree imposes a
structure on the search space of all possible clus-
ters and the order in which features are considered
determines this structure. Thus, an important fu-

ture research topic is to investigate how the algo-
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rithm can be improved by determining a generic
way of creating high quality partitioning for arbi-
trary clustering problems.

Finally, the ability of this approach to han-
dle arbitrary performance functions opens up
some interesting possibilities. In this paper we on-
ly considered a measure of cluster compactness,
but as noted in Section 3.2, any measure can be
used. Thus, it is of interest to apply the new algo-
rithm with various measures of cluster perform-
ance and compare qualities of the resulting
cluster. In other words, by using the same opti-
mization methodology, but different measures of
what makes a good cluster, and analyzing the re-
sulting clusters, we believe insights into data clus-

tering in general could be obtained.
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