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Abstract: To enhance energy efficiency and reduce emissions in prefabricated construction,

optimizing the production scheduling of precast concrete is considered an effective approach.

Due to the unique characteristics of precast concrete during production, traditional scheduling

models are no longer applicable. This present study introduces practical considerations, such

as a limited number of molds, buffers, uncertainty of order arrivals and vehicles. Furthermore,

to meet the requirements of contemporary industrial development, a mulit-objective

optimization scheduling model is formulated by integrating total processing time, on-time

delivery rate and work station idle time. A solution based on reinforcement learning algorithm

is devised. Results indicate that this method can effectively undergo training and achieve

outstanding performance in addressing such issues. The model has the potential to

significantly reduce decision-making time in precast production, thereby contributing to the

sustainable development of prefabricated construction.
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1. INTRODUCTION

The construction method of prefabricated construction offers numerous advantages,

including reduced labor costs, shorter construction durations, and enhanced construction

quality compared to traditional construction approaches. As a result, it is regarded as an

inevitable trend within the construction industry [1].However, cost control remains a

significant challenge in the realm of prefabricated construction [2].

To reduce production costs for precast concrete, we can approach the challenge from

both managerial and technological perspectives. On the technological front, this involves

significant financial investments in cutting-edge machinery, real-time scheduling monitoring,
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and computer equipment. However, these investments may not be feasible for many smaller

prefabrication facilities. In contrast, optimizing production scheduling at the management

level offers a more cost-effective alternative that has gained widespread adoption. As a result,

in recent years, there has been a growing emphasis on research related to production

scheduling for precast concrect. In this research field, the current major innovations can be

categorized into three aspects: modeling of precast concrete scheduling, optimization methods,

and dynamic factors with re-scheduling. In terms of modeling, considerations include mold

constraints [3], labor-related constraints [4], multiple production lines [5], adding new

processes [6], and buffers [7]. In terms of optimization methods, currently, genetic algorithms

remain mainstream. They are applied to multi-objective or multi-line precast concrete

scheduling problems [8]. Some studies integrate genetic algorithms with other methods to

enhance performance [6,9]. However, to address real-time scheduling in dynamic

environments, reinforcement learning methods show promising prospects [10]. In terms of

dynamic factors and re-scheduling, current research accounts for design changes, urgent

orders, machine failures, etc. Solutions involve rescheduling across multiple production lines

[11] and prioritizing product-based rescheduling [12]. Therefore, this study will utilize

reinforcement learning as the optimization method, further exploring its applicability in the

more complex environment of precast concrete scheduling.

2. A PRECAST CONCRETE PRODUCTION SCHEDULING MODEL

In the early stages of research, the precast concrete production process was primarily

divided into six steps: mold assembling, rebars and embedded parts placement, concrete

casting, curing, mold removal, and quality inspection with surface treatment. Wang and Hu

[6], adopting a holistic perspective on the entire supply chain, expanded the production

process of precast concretes to include three additional steps: mold production, storage, and

transportation, making it a total of nine steps. They considered that, due to the insufficient

standardization in the modular construction industry, many different types of components

lack readily available molds, making the inclusion of mold production steps more aligned

with practical needs. Additionally, recognizing the time required for storage and

transportation post-production is essential, as neglecting these processes could lead to results

inconsistent with reality, where the calculated completion time may be less than the actual

delivery time. Considering the mold production stage will affect the training of reinforcement

learning agents, as this environment significantly increases the scheduling uncertainty, the

current use of reinforcement learning in the field of precast concrete scheduling is still not

mature. RUAN (2022) configured the production process into eight steps, and after training

and debugging, this study believes that RUAN's (2022) scheduling model is more conducive

to the training of reinforcement learning[13]. Therefore, the precast concrete manufacturing

process considered in this paper includes the following eight steps: (1) Mold assembling; (2)

Rebars and embedded parts placement; (3) Concrete casting (concrete placement, concrete

vibration, concrete scraping); (4) Concrete curing; (5) Mold removal; (6) Quality inspection

and surface treatment; (7) Storing; (8) Transportation. A simplified process flowchart is

illustrated in Fig 1. And the specific scheduling process of the eight production stages is

illustrated in Fig 2.
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Fig 1. Eight processes of precast concrete

3. DEEPQ-NETWORKALGORITHM

The DQN algorithm for the precast concrete production scheduling problem consists of

three main components, the Fig 3. shows the interaction process between the Precast Concrete

Production Simulator and the DQN algorithm.The first component is the Precast Concrete

Production Simulator, designed to replicate the workshop's production environment. After the

agent outputs an action, the simulator selects the next workpiece to be processed using a

dispatching rule. It then simulates the processing environment for the chosen workpiece,

calculating rewards and new states for each decision. The second component is the DQN

algorithm, incorporating a Markov chain design based on actions, states, and rewards for

training the agent. The third component is the Workpiece Generator, simulating the arrival of

random orders and sequentially placing them in the processing queue. This allows the Precast

Concrete Production Simulator to determine the next workpiece for processing based on

actions and dispatching rules.

Job Pool

Filter based on mold 
availability

P1：Mold assembling

The number of such 
molds  decreases 1 Calculate the start time

Buffer check

P2：Rebars and embedded 
parts placement

Calculate the start time

If the regular working hours 
are not sufficient to 
complete the task, overtime 
will be required until it is 
finished.

Calculate the start time

P3：Concrete casting

Buffer check

P6：Quality inspection and 
surface treatment

P7：Storing

P4：Concrete curing

Carried out in the curing 
room, assuming unlimited 
storage space inside, the 

buffer can be ignored

i.Concrete placement

ii.Concrete vibration

Iii.Concrecte scraping

Calculate the start time

P5：Mold removal

Sufficient vehicles? P8：Transportation

Calculate the start time

P0 P2

P3P4P5

P6 P7 Relevant setting

Insufficient M
old for the Job

DQN-Agent 
&

Action SpaceSufficient M
old for the Job

job

Job deque

P1

No

Yes

While available vehicle exits

P8

i.Mold mounts=m

ii.Buffer space=n

Iii.Vehicle mounts=M

Fig 2. Production scheduling rules for precast concrete

In the design of the Markov chain, seven states are employed to describe the production
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status in the simulated workshop, namely:(1) s0 represents the current decision time point,

which is also the start time of the next job in the first process; (2) s1 represents the current

number of days elapsed; (3) s2 represents the remaining number of jobs; (4) s3 represents the

average slack time, indicating the average duration each job waiting for processing deviates

from its respective due time; (5) s4 represents the minimum slack time; (6) s5 represents the

maximum slack time; (7) s6 represents the standard deviation of slack time for jobs waiting

for processing. In terms of action selection, four commonly used dispatching rules in the

production scheduling domain were chosen: (1) EDD (Earliest Due Date); (2) SPT (Shortest

Processing Time); (3) CR (Critical Ratio); (4) FIFO (First In, First Out). In terms of the

reward mechanism, three objectives are established: (1) total processing time（sparse reward）;

(2) on-time delivery rate(dense reward); (3)work station idle time(spare reward).
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Fig 3. Principles of Algorithm Interaction

The agent module, as depicted in the Fig 4., comprises an input layer with seven states,

an output layer with four actions corresponding to four scheduling rules, and four hidden

layers. Each hidden layer contains 30 nodes, and hyperbolic tangent (Tanh) serve as

activation functions between layers.
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Fig 4. Schematic illustration of the neural network in PC-DQN
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4. SIMULATION EXPERIMENTS

Simulation experiments were conducted using Python 3.9 on a computer equipped with

an Intel i5-12490f processor, 16GB RAM, and an RTX 3060 graphics card. The simulation

utilized background data commonly employed by researchers [6]. The processing times for

each precast concrete product type are presented in Table 1. Notably, the processing time for

process 7 is assumed to be 0 by default and will be calculated based on actual circumstances.

Additionally, the processing time for process 8 is set to 2 hours in this study, representing the

time required for transporting concrete products from the precast concrete plant to the

construction site and back.

Table 1. Processing time for each PC product type.

Product type
Processing time(h)

P1 P2 P3 P4 P5 P6 P7 P8

Type 1 1.5 2.0 0.5 8.0 1.0 0.5 0 2.0

Type 2 1.0 2.0 0.4 8.0 1.0 0.5 0 2.0

Type 3 1.0 1.5 0.5 8.0 0.5 0.5 0 2.0

Type 4 0.5 1.0 0.3 8.0 0.3 0.5 0 2.0

Type 5 1.0 0.8 1.0 8.0 1.5 0.5 0 2.0

Type 6 0.5 2.0 0.4 8.0 0.5 0.5 0 2.0

Type 7 1.5 2.0 0.5 8.0 1.0 0.4 0 2.0

Type 8 0.5 2.0 0.3 8.0 0.6 0.3 0 2.0

Type 9 1.5 1.8 1.2 8.0 1.5 1.5 0 2.0

Type 10 0.4 0.5 0.6 8.0 0.5 0.5 0 2.0

Table 2 displays the hyperparameters set in this study during the experiments. In the

training phase, a total of 5000 episodes were trained with a replay buffer capacity of 10000.

64 sets of data are randomly selected from the buffer for each training iteration. The target

model was updated every 10 steps to enhance training stability. Training utilized an ε

-greedy strategy, starting with an exploration rate of 1, which decreased to zero at episode

3000, expediting model convergence and preventing potential issues such as gradient

explosion.

Table 2. Hyperparameter for training DQN.

Hyperparameter Value

Number of episodes (E) 3000

Minibatch size 64

update frequency i 10

Size of reply buffer (θ) 10000

Greedy exploration factor (ε) Linearly increased from 0.00 to 1.00

Discount factor (γ) 0.95

Learning rate (α) 0.01
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The Fig 5. and Fig 6. illustrates the changes in training loss and reward values during the

training process of the agent over 3000 episodes. As training progresses, there is a noticeable

decrease and convergence in the loss value. Additionally, the total reward value gradually

increases, indicating that the agent has effectively learned to address the dual-objective PC

scheduling problem.

Fig 5. Training loss curve Fig 6. Reward curve

REFERENCE

[1] G. Tumminia, F. Guarino, S. Longo, et al. "Life cycle energy performances and
environmental impacts of a prefabricated building module." Renewable and Sustainable
Energy Reviews, vol. 92, pp. 272-283, 2018.

[2] J. Hong, G. Q. Shen, Z. Li, et al. "Barriers to promoting prefabricated construction in

China: A cost–benefit analysis." Journal of Cleaner Production, vol. 172, pp. 649-660,

2018.
[3] V. Benjaoran, N. Dawood, B. Hobbs. "Flowshop scheduling model for bespoke precast

concrete production planning." Construction Management and Economics, vol. 23, no. 1,
pp. 93-105, 2005.

[4] J. Cao, P. Zhao, G. Liu. "Optimizing the production process of modular construction
using an assembly line-integrated supermarket." Automation in Construction, vol. 142, p.
104495, 2022.

[5] Z. Yang, Z. Ma, S. Wu. "Optimized flowshop scheduling of multiple production lines for
precast production." Automation in Construction, vol. 72, pp. 321-329, 2016.

[6] Z. Wang, H. Hu. "Improved Precast Production–Scheduling Model Considering the

Whole Supply Chain." Journal of Computing in Civil Engineering, vol. 31, no. 4, p.
04017013, 2017.

[7] Y. R. Dan, G. W. Liu, Y. Fu. "Optimized flowshop scheduling for precast production
considering process connection and blocking." Automation in Construction, vol. 125, p.
103575, 2021.

[8] W. Niu, J. Li. "A two-stage cooperative evolutionary algorithm for energy-efficient
distributed group blocking flow shop with setup carryover in precast systems."
Knowledge-Based Systems, vol. 257, p. 109890, 2022.

[9] B. Anvari, P. Angeloudis, W. Y. Ochieng. "A multi-objective GA-based optimisation for
holistic Manufacturing, transportation and Assembly of precast construction."
Automation in Construction, vol. 71, pp. 226–241, 2016.

[10] T. Kim, Y. W. Kim, D. Lee, et al. "Reinforcement learning approach to scheduling of
precast concrete production." Journal of Cleaner Production, vol. 336, p. 130419, 2022.

61



[11] Z. L. Ma, Z. T. Yang, S. L. Liu, S. Wu. "Optimized rescheduling of multiple production
lines for flowshop production of reinforced precast concrete components." Automation in
Construction, vol. 95, pp. 86–97, 2018.

[12] Z. Wang, H. Hu, J. Gong. "Modeling worker competence to advance precast production
scheduling optimization." Journal of Construction Engineering and Management, vol.
144, no. 11, p. 04018098, 2018.

[13] M. H. Ruan, F. Xu. "Improved eight-process model of precast component production
scheduling considering resource constraints." Journal of Civil Engineering and

Management, vol. 28, no. 3, pp. 208–222, 2022.

62




