• Title/Summary/Keyword: performance-based optimization

Search Result 2,575, Processing Time 0.031 seconds

Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method

  • Park Keon-Jun;Lee Young-Il;Oh Sung-Kwun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2005
  • In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design(The First Report) : Theory and Design Support System (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제1보) : 이론 및 설계지원 시스템)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The early phase of design intrinsically contains multiple sources of uncertainty in describing design, and nevertheless the decision-making process at this phase exerts a critical effect upon drawing a successful design. This paper proposes a set-based design approach for multi-objective design problem under uncertainty. The proposed design approach consists of four design processes including set representation, set propagation, set modification, and set narrowing. This approach enables the flexible and robust design while incorporating designer's preference structure. In contrast to existing optimization techniques, this approach generates a ranged set of design solutions that satisfy changing sets of performance requirements.

REAL-TIME DECISION SUPPORT FOR PLANNING CONCRETE PLANT OPERATION WITH AN INTEGRATED VEHICLE NAVIGATION SYSTEM

  • Chen, Wu;Lu, Ming;Dai, Fei;Shen, Xuesong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.247-250
    • /
    • 2006
  • Integrating a GPS based vehicle navigation system and the latest optimal algorithms, this research aims to develop a real-time decision support platform for concrete plant to provide the optimal solutions for ready mixed concrete delivery. The platform includes fleet tracking system, simulation and optimization tools, and visual interface which is useful to monitor delivery progress, to obtain crucial historical and real-time data for simulation, and to improve the efficiency of the plant operation. This paper presents configuration of the system and performance evaluation based on operational data.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

Wavelet-Based Fuzzy Modeling Using a DNA Coding Method (DNA 코딩 기법을 이용한 웨이브렛 기반 퍼지 모델링)

  • Lee, Yeun-Woo;Yu, Jin-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2040-2042
    • /
    • 2003
  • In this paper, we propose a new method about wavelet-based fuzzy modeling using a DNA coding method. DNA coding techniques is known that expression of knowledge is various than Genetic Algorithm(GA) usually by made optimization technique because done base in structure of biologic DNA and optimization performance is superior. The reposed method make fuzzy system model in wavelet transform and equivalence relation after identification with coefficient of wavelet transform using a DNA coding techniques. Also, can get fuzzy model effectively of nonlinear system using advantage of strong wavelet transform about function that have sudden change. In this paper, in order to demonstrate the superiority of the proposed method compared with GA.

  • PDF

Code Generation and Optimization for the Flow-based Network Processor based on LLVM

  • Lee, SangHee;Lee, Hokyoon;Kim, Seon Wook;Heo, Hwanjo;Park, Jongdae
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.42-45
    • /
    • 2012
  • A network processor (NP) is an application-specific instruction-set processor for fast and efficient packet processing. There are many issues in compiler's code generation and optimization due to NP's hardware constraints and special hardware support. In this paper, we describe in detail how to resolve the issues. Our compiler was developed on LLVM 3.0 and the NP target was our in-house network processor which consists of 32 64-bit RISC processors and supports multi-context with special hardware structures. Our compiler incurs only 9.36% code size overhead over hand-written code while satisfying QoS, and the generated code was tested on a real packet processing hardware, called S20 for code verification and performance evaluation.

Energy-efficiency Optimization Schemes Based on SWIPT in Distributed Antenna Systems

  • Xu, Weiye;Chu, Junya;Yu, Xiangbin;Zhou, Huiyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.673-694
    • /
    • 2021
  • In this paper, we intend to study the energy efficiency (EE) optimization for a simultaneous wireless information and power transfer (SWIPT)-based distributed antenna system (DAS). Firstly, a DAS-SWIPT model is formulated, whose goal is to maximize the EE of the system. Next, we propose an optimal resource allocation method by means of the Karush-Kuhn-Tucker condition as well as an ergodic method. Considering the complexity of the ergodic method, a suboptimal scheme with lower complexity is proposed by using an antenna selection scheme. Numerical results illustrate that our suboptimal method is able to achieve satisfactory performance of EE similar to an optimal one while reducing the calculation complexity.

Sinusoidal Map Jumping Gravity Search Algorithm Based on Asynchronous Learning

  • Zhou, Xinxin;Zhu, Guangwei
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.332-343
    • /
    • 2022
  • To address the problems of the gravitational search algorithm (GSA) in which the population is prone to converge prematurely and fall into the local solution when solving the single-objective optimization problem, a sine map jumping gravity search algorithm based on asynchronous learning is proposed. First, a learning mechanism is introduced into the GSA. The agents keep learning from the excellent agents of the population while they are evolving, thus maintaining the memory and sharing of evolution information, addressing the algorithm's shortcoming in evolution that particle information depends on the current position information only, improving the diversity of the population, and avoiding premature convergence. Second, the sine function is used to map the change of the particle velocity into the position probability to improve the convergence accuracy. Third, the Levy flight strategy is introduced to prevent particles from falling into the local optimization. Finally, the proposed algorithm and other intelligent algorithms are simulated on 18 benchmark functions. The simulation results show that the proposed algorithm achieved improved the better performance.

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.