• Title/Summary/Keyword: performance-based optimization

Search Result 2,574, Processing Time 0.027 seconds

The Research of Airfoil Development for Wind Turbine Blade (풍력 블레이드용 익형 개발에 대한 연구)

  • Kim, Tae-Woo;Park, Sang-Gyoo;Kim, Jin-Bum;Kweon, Ki-Yeoung;Oh, Si-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.512-515
    • /
    • 2009
  • This research describes on airfoil shape design, crucial to core technique and algorithm optimization for the wind turbine blade development. We grasped the parameter to define the airfoil shape in the wind turbine blade and aircraft, and the important performance characteristic of the airfoil. The airfoil shape function is selected by studying which is suitable for wind turbine blade airfoil development. The selected method is verified by to compare the generated airfoil shape with base airfoil. The new airfoils were created by the selecting shape function based on the well-known airfoil for wind turbine blades. In addition, we performed aerodynamic analysis about the generated airfoils by XFOIL and estimated the point of difference in the airfoil shape parameter using the aerodynamic performance results which is compared with basic airfoil. This result data applies to the fundamental research for a wind turbine blade optimization design and accomplished the aerodynamic analysis manual.

  • PDF

Scheduling and Power Control Framework for Ad hoc Wireless Networks

  • Casaquite, Reizel;Yoon, Myung-Hyun;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.6
    • /
    • pp.745-753
    • /
    • 2007
  • The wireless medium is known to be time-varying which could affect and result to a poor network's performance. As a solution, an opportunistic scheduling and power control algorithm based on IEEE 802.11 MAC protocol is proposed in this paper. The algorithm opportunistically exploits the channel condition for better network performance. Convex optimization problems were also formulated i.e. the overall transmission power of the system is minimized and the "net-utility" of he system is maximized. We have proven that an optimal transmission power vector may exist, satisfying the maximum power and SINR constraints at all receivers, thereby minimizing overall transmission power and maximizing net-utility of the system.

  • PDF

Parametric Study for Conductor Design of KSTAR PF Coils

  • Yoon, Cheon-Seog;Qiuliang Wang;Kim, Myungkyu;Kim, Keeman;Lee, Dong-Ryul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • Large superconducting magnets such as ITER (International Thermonuclear Experimental Research) or KSTAR (Korean Superconducting Tokamak Advanced Research) magnet system adopted a cable-in-conduit conductor (CICC) using a forced-flow cooling system. Main optimization criteria for the conductor design of superconducting magnet system are stability margin and CICC cooling requirements. A zero-dimensional method is applied for the calculation of stability and the conductor optimization. In order to increase conductor performance, three different strands, ITER HP-I and HP-II, and KSTAR HP-Ⅲ, are tested. The strand characteristics of KSTAR HP-Ⅲ are measured in the Samsung's PPMS and Jc measurement system, and applied for this study. Also, the strand diameters, 0.81 mm and 0.78 mm are considered for this study, due to design change. Based on this result, the proposed configuration of CICC has been fabricated.

Design Optimization of an Extruded-type Cooling Structure for Reducing the Weight of LED Streetlights (LED 가로등용 압출형 방열 구조물 경량화를 위한 최적 설계)

  • Park, Seung-Jae;Lee, Tae-Hee;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.394-401
    • /
    • 2016
  • The configuration of an extruded-type cooling structure was optimized for the light-emitting diode (LED) streetlights that have recently replaced convectional metal halide streetlights for energy saving. Natural convection and radiative heat transfer over the cooling structure were simulated using a numerical model with experimental verification. An improved cooling structure type was suggested to overcome the previous performance degeneration, as confirmed by analyzing the thermal flow around the existing cooling structure. A parameter study of the cooling structure geometries was also conducted and, based on the numerical results, the configuration was optimized to reduce the weight of the cooling structure. Consequently, the mass of the cooling structure was reduced by 60%, while the thermal performance was improved by 10%.

Optimization approach of insulation thickness of non-vacuum cryogenic storage tank

  • MZAD, Hocine;HAOUAM, Abdallah
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Cryogenic insulation systems, with proper materials selection and execution, can offer the highest levels of thermal performance. Insulations are listed in order of increasing performance and, generally, in order of increasing cost. The specific insulation to be used for a particular application is determined through a compromise between cost, ease of application and the effectiveness of the insulation. Consequently, materials, representative test conditions, and engineering approach for the particular application are crucial to achieve the optimum result. The present work is based on energy cost balance for optimizing the thickness of insulated chambers, using foamed or multi layered cryogenic shell. The considered insulation is a uniformly applied outer layer whose thickness varies with the initial and boundary conditions of the studied vessel under steady-state radial heat transfer. An expression of the optimal insulation thickness derived from the total cost function and depending on the geometrical parameters of the container is presented.

Design Optimization Based on Designer's Preferences for the Mean and Variance (평균과 분산에 관한 설계자 선호에 기초한 설계 최적화)

  • Park, Jong-Cheon;Kim, Kyung-Mo;Kim, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2009
  • In Taguchi's quadratic expected loss function used as robustness metric of performance characteristics, the mean and variance contributions are confounded. The consolidation of the mean and variance in the expected loss function may not always be the ideal approach. This paper presents a procedure for multi-attributes design optimization, where the mean and variance of performance characteristics are considered as separate attributes having designer's relative preferences for them and Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) is introduced to attain robust optimal design. The effectiveness of proposed approach is shown with an example of a weld line minimization problem in the injection molding process.

  • PDF

Implementation of Optimization of the Uplift Amount Measurement System of Overhead Contact Line (전차선 압상량 검출을 위한 최적 시스템 구현)

  • Park, Young;Lee, Kiwon;Park, Chulmin;Kwon, Sam-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.886-890
    • /
    • 2013
  • Uplift of contact wire and dynamic characteristics between pantograph and contact wire are key interaction performance of OCS (Overhead Catenary System). These two evaluation items are the approval criteria for the performance between OCS and pantograph. A telemetry system or DAQ (Data Acquisition) System based on wireless communication make it monitor a dynamic behavior which is measured directly in a 25 kv like parts. While permissible working time is too short time to install is too long. In this paper, it is described that optimization the telemetry measurement system for OCS and increasing accuracy, easy adaptation, and faster handling can be also achieved through the study.

COMPUTATIONAL DESIGN OF A FLUTED NOZZLE FOR ACHIEVING TARGET AERODYNAMIC PERFORMANCE (목적 공력특성 달성을 위한 플루트 노즐 전산설계)

  • Kang, Y.J.;Yang, Y.R.;Hwang, U.C.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • As a preliminary design study to achieve target aerodynamic performance, this work was conducted on an original nozzle with 9 flutes in order to design a fluted nozzle with 12 flutes. The thrust and rolling moment of the nozzle with 12 flutes were analyzed using a CFD code according to the depth and rotation angle of the flutes. Based on this, a fluted nozzle with 12 flutes was optimized to yield the same thrust as that of the original nozzle with 9 flutes. The response surface method was applied for shape optimization of the fluted nozzle and design variables were selected to determine the depth angle and rotation angle of the flutes. An optimized shape that led to a thrust as strong as that of the original nozzle was obtained.

A New Anti-windup Method Using the Linear Quadratic Observer (LQ관측기를 사용한 새로운 누적방지 기법)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.134-139
    • /
    • 2010
  • In order to overcome some problems of existing anti-windup methods, this paper defines LQ (Linear Quadratic) observer and proposes a new anti-windup method using the LQ observer. LQ observer is derived by linear quadratic optimization in order to calculate controller states, which make the controller outputs equal to the plant inputs. And we propose an algorithm so that it can be implemented by a digital controller easily. The relationship between the design parameters and the anti-windup performance is shown via some numerical examples, which cover the cases with the anti-windup method using LQ observer designed and the case without it. Finally, the anti-windup performance of the proposed method is exemplified via comparison with the existing model-based conditioning scheme method[4].

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.