• Title/Summary/Keyword: performance rubber bearing

Search Result 109, Processing Time 0.027 seconds

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Azizkhani, Mohammadbagher;Kadkhodapour, Javad;Anaraki, Ali Pourkamali;Hadavand, Behzad Shirkavand;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.779-788
    • /
    • 2020
  • Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.

Experimental Study on Seismic Performance of Base-Isolated Bridge (지진 격리된 교량의 내진성능에 대한 실험적 연구)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Depiction of concrete structures with seismic separation under faraway fault earthquakes

  • Luo, Liang;Nguyen, Hoang;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Alyousef, Rayed;Nguyen, Viet-Duc;Dang, Hoang-Minh
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • One of the most suitable methods in structural design is seismic separator. Lead-Rubber Bearing (LRB) is one of the most well-known separation systems which can be used in different types of structures. This system mitigates the earthquake acceleration prior to transferring to the structure efficiently. However, the performance of this system in concrete structures with different heights have not been evaluated thoroughly yet. This paper aims to evaluate the performance of LRB separation system in concrete structures with different heights. For this purpose, three, 16, and 23 story concrete structures are equipped by LRB and exposed to a far-field earthquake. Next, a time history analysis is conducted on each of the structures. Finally, the performance of the concrete structures is compared with each other in the term of their response to the earthquakes and the formation of plastic hinges. The results of the paper show that the rate of change in acceleration response and the ratio of drift along the height of 8 and 23 stories concrete structures are more than those of the 16-stories, and the use of LRB reduces the formation of plastic joints.

Seismic Response Evaluation of PSCI Girder Bridges Considering Stiffness Variation in Elastic Bearings (탄성받침의 강성 변동을 고려한 PSCI 거더 교량의 지진 응답 평가)

  • Yoon, Hyejin;Cho, Chang-Beck;Kim, Young-Jin;Kang, Jun Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.187-192
    • /
    • 2023
  • An elastic bearing must be strong against vertical loads and flexible against horizontal loads. However, due to the material characteristics of rubber, it may show variability due to the manufacturing process and environmental factors. If the value applied in the bridge design stage and the actual measured value have different values or if the performance during operation changes, the performance required in the design stage may not be achieved. In this paper, the seismic response of bridges was compared and analyzed by assuming a case where quality deviation occurs during construction compared to the design value for elastic bearings, which have not only always served as traditional bearings but also have had many applications in recent seismic reinforcement. The bearing's vertical stiffness and shear stiffness deviation were considered separately for the quality deviation. In order to investigate the seismic response, a time history analysis was performed using artificial seismic waves. The results confirmed that the change in the bearing's shear stiffness affects the natural period and response of the structure.

A Study on the Development of Ship's Stern Tube Sealing System(II) -Based on Face Seals- (선미관 밀봉장치의 개발에 관한 연구 (II) -풰이스 시일을 중심으로-)

  • 김영식;전효중;왕지석;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.47-54
    • /
    • 1991
  • The lip seals widely used nowadays in stern tube sealing system of ships have radial sealing contact with shafts or liners, on the other hand the face seals of stern tube sealing system have axial sealing contact with seat. Because of axial sealing contact, the face seals have a large number of merits such as durability of life, simplicity of structure, easy fitting and replacement, etc. In this paper, for the purpose of development of face seals, the fundamental properties of axial sealing contact were analyzed and a trial face seal was designed and manufactured using N.B.R. rubber and Thordon which is widely used for bearing materials. The seal proper of trial face seal was made from N.B.R. rubber and the face insert was made from Thordon, thermosetting resins which are three dimensional, cross linked condensation polylmers. The performance test of trial face seal was carried out on the test bench which was specially designed and manufactured. The results were satisfactory enough to be used in practical stern tube sealing system.

  • PDF

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.

Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants (원전 적용을 위한 면진장치의 성능기반 설계 변위 추정)

  • Kim, Jung Han;Choi, In-Kil;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Feasibility Study for Seismic Performance Enhancement of NPP Based on Equipment Base Isolation (기기면진 기반 원전 내진성능 상향 타당성 검토)

  • Lee, Jin Hyeong;Shin, Tae Myung;Koo, Gyeong Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.88-95
    • /
    • 2018
  • In this study, to enhance the seismic performance of nuclear power plants (NPP), a small laminated rubber bearing (LRB) is chosen as a seismic design option of the vulnerable equipment. Prior to the application of equipment base isolation, it is necessary to review the feasibility that the technique contributes enough to the seismic performance of NPP by analysis. At first, some preliminary design of small LRBs for equipment is carried out. Design parameters such as horizontal and vertical stiffnesses, design natural frequencies are checked by calculation and analysis for the four design options considering various upper weights. Performance test of small LRB is to be carried out to verify static performance using the results.

Free Vibration Test for Base Isolated Real Size One Bay-Two Story Steel Frame (면진된 실대형 일경간-이층 철골조 자유진동 실험)

  • 김대곤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.391-398
    • /
    • 2000
  • To evaluate the seismic performance of a base isolated building accurate analytical model should be selected. The analytical results such as reduced accelerations member forces and relative displacements of the superstructure of the base isolated building are only meaningful when the analytical model is close enough to the real structure. Real size one bay-two story steel frame and two kinds of seismic isolators(laminated elastomeric bearing and lead-rubber bearing) are designed. manufactured and constructed in the laboratory. Free vibration tests using fuse bars were conducted to evaluate the change of dynamic characteristics(period and damping) before and after base isolation of the steel frame. The experimental results of free vibration tests were also used as a bench mark for adjusting the selected analytical modeling to real base isolated steel frame.

  • PDF