• Title/Summary/Keyword: performance objective

Search Result 5,781, Processing Time 0.039 seconds

Improvement in Early Strength of Concrete Using Blast Furnace Slag by KOH (KOH에 의한 고로슬래그 미분말을 사용한 콘크리트의 초기강도 향상)

  • Lee, Ju-Sun;Song, Ri-Fan;Park, Byoung-Kwan;Back, Dae-Hyun;Pei, Chang-Chun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.53-56
    • /
    • 2009
  • This study reviewed the characteristics of concrete made of performance improving mixture materials based on KOH as a means to resolve the problems of initial quality reduction that result in concretes with blast furnace slag powder. Summarizing the results, first as the characteristics of fresh concrete, liquidity was found to reduce in general with increased BS substitution ratio. Objective range of liquidity was not satisfied in all mixes according to the use of performance improving mixture materials. Air capacity was satisfied to the objective range in all mixes. As the characteristics of hardened concrete, while compressive strength showed a decreasing trend with increasing BS substitution ratio at early age, increasing trend was shown by the plain with increasing BS substitution ratio at later age. On the other hand, K1 and K2 were only effective among mixture materials at early age, but K1F30 showed excellent strength at both early and later ages.

  • PDF

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Flammability and Multi-objective Performance of Building Façades: Towards Optimum Design

  • Bonner, Matthew;Rein, Guillermo
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The façade is an important, complex, and costly part of a building, performing multiple objectives of value to the occupants, like protecting from wind, rain, sunlight, heat, cold, and sound. But the frequency of façade fires in large buildings is alarming, and has multiplied by seven times worldwide over the last three decades, to a current rate of 4.8 fires per year. High-performing polymer based materials allow for a significant improvement across several objectives of a facade (e.g., thermal insulation, weight, and construction time) thereby increasing the quality of a building. However, all polymers are flammable to some degree. If this safety problem is to be tackled effectively, then it is essential to understand how different materials, and the façade as a whole, perform in the event of a fire. This paper discusses the drivers for flammability in facades, the interaction of facade materials, and current gaps in knowledge. In doing so, it aims to provide an introduction to the field of façade fires, and to show that because of the drive for thermal efficiency and sustainability, façade systems have become more complex over time, and they have also become more flammable. We discuss the importance of quantifying the flammability of different façade systems, but highlight that it is currently impossible to do so, which hinders research progress. We finish by putting forward an integral framework of design that uses multi-objective optimization to ensure that flammability is minimized while considering other objectives, such as maximizing thermal performance or minimizing weight.

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

Experimental and numerical structural damage detection using a combined modal strain energy and flexibility method

  • Seyed Milad Hosseini;Mohamad Mohamadi Dehcheshmeh;Gholamreza Ghodrati Amiri
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.555-574
    • /
    • 2023
  • An efficient optimization algorithm and damage-sensitive objective function are two main components in optimization-based Finite Element Model Updating (FEMU). A suitable combination of these components can considerably affect damage detection accuracy. In this study, a new hybrid damage-sensitive objective function is proposed based on combining two different objection functions to detect the location and extent of damage in structures. The first one is based on Generalized Pseudo Modal Strain Energy (GPMSE), and the second is based on the element's Generalized Flexibility Matrix (GFM). Four well-known population-based metaheuristic algorithms are used to solve the problem and report the optimal solution as damage detection results. These algorithms consist of Cuckoo Search (CS), Teaching-Learning-Based Optimization (TLBO), Moth Flame Optimization (MFO), and Jaya. Three numerical examples and one experimental study are studied to illustrate the capability of the proposed method. The performance of the considered metaheuristics is also compared with each other to choose the most suitable optimizer in structural damage detection. The numerical examinations on truss and frame structures with considering the effects of measurement noise and availability of only the first few vibrating modes reveal the good performance of the proposed technique in identifying damage locations and their severities. Experimental examinations on a six-story shear building structure tested on a shake table also indicate that this method can be considered as a suitable technique for damage assessment of shear building structures.

Sasang Constitution Detection Based on Facial Feature Analysis Using Explainable Artificial Intelligence (설명가능한 인공지능을 활용한 안면 특징 분석 기반 사상체질 검출)

  • Jeongkyun Kim;Ilkoo Ahn;Siwoo Lee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.36 no.2
    • /
    • pp.39-48
    • /
    • 2024
  • Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

A Study on Development of a Hearing Impairment Simulator considering Frequency Selectivity and Asymmetrical Auditory Filter of the Hearing Impaired (난청인의 주파수 선택도와 비대칭적 청각 필터를 고려한 난청 시뮬레이터 개발에 관한 연구)

  • Joo, Sang-Ick;Kang, Hyun-Deok;Song, Young-Rok;Lee, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.831-840
    • /
    • 2010
  • In this paper, we propose a hearing impairment simulator considering reduced frequency selectivity and asymmetrical auditory filter of the hearing impaired, and we verified the reduced frequency selectivity and asymmetrical auditory filter affected in speech perception through experiments. The reduced frequency selectivity has made embodied by spectral smearing using LPC(linear prediction coding). The shapes of auditory filter are asymmetrical different with each center frequency. Hearing impaired person which has hearing loss was differently changed with that of normal hearing people and it has different value for speech of quality through auditory filter. The experiments confirmed subjective test and objective test. The subjective experiments are composed of 4 kinds of tests: pure tone test, SRT(speech reception threshold) test, and WRS(word recognition score) test without spectral smearing, and WRS test with spectral smearing. The experiment of the hearing impairment simulator was performed from 9 subjects who have normal ears. The amount of spectral smearing was controlled by LPC order. The asymmetrical auditory filter of proposed hearing impairment simulator was simulated and then some tests to estimate the filter's performance objectively were performed. The objective experiment as simulated auditory filter's performance evaluation method used PESQ(perceptual evaluation of speech quality) and LLR(log likelihood ratio) for speech through auditory filter. The processed speech was evaluated objective speech quality and distortion using PESQ and LLR value. When hearing loss processed, PESQ and LLR value have big difference according to asymmetrical auditory filter in hearing impairment simulator.

Multi-Objective Optimization of Turbofan Engine Performance Using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 터보팬 엔진 다목표 성능 최적화 연구)

  • Choi, Jaewon;Chung, Wonchul;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.326-333
    • /
    • 2015
  • A turbo fan engine performance analysis program combined with a particle swarm optimization(PSO) has been developed to optimize the major design parameters of the combat aircraft gas turbine engine. The optimized parameters includes bypass ratio, fan pressure ratio, high pressure compression ratio and burner exit temperature. The objective parameters have been determined using a multi-objective function consisting of the net thrust and specific fuel consumption along a weight function. The basic model for the combat aircraft gas turbine engine has been selected as the F404 turbofan engine which is widely used in the combat aircraft, F-18 and Korean high level training aircraft, T-50. The optimal conditions of four parameters have been obtained for various design conditions.

Objective Hand of High-performance Silk Fabrics (기능성 가공된 견직물의 태)

  • Kim, Hyun-Ah;Ryu, Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.754-764
    • /
    • 2010
  • Most silk fabrics are produced only after the degumming process to make the best use of the properties and have restricted silk processing that do not hinder their performance. However, considering the highly increased preference for natural fibers and the shortage of raw silk, high-quality upgraded silk product functions are required by the development of a processing technology and a good design. This study analyzes the changes with the samples by the functional finish such as softening finishing, wash and wear, tannin weighting by measuring the objective hand of scoured silk and three finished ones using KES-FB. As a result, the change of objective hand of finished silk fabrics that improves functionality was analyzed and compared. The increase of KOSHI after the finish became stiffer show that the silk fabric samples are appropriate for summertime clothes with the retention of a certain clothing climate for the body. The stiffness of finished fabrics for the normal had a closer relationship with the density of fabrics than the type of finishing. The samples (after the softening finishes) maintain better elasticity according to the properties of the softener and the finishing agent. Although the specimens of this study were thin fabrics, their elasticity against compression increased after the softening finishes and became softer than degummed silk. The surface properties of georgette were changed by all types of finishing.