• Title/Summary/Keyword: performance monitor

Search Result 1,152, Processing Time 0.026 seconds

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.

The Effect of Gesture Based Interface on Presence Perception and Performance in the Virtual Reality Learning Environment (가상현실 학습환경에서 동작기반 인터페이스가 실재감 지각 및 수행에 미치는 효과)

  • Ryu, Jeeheon;YU, SEUNGBEOM
    • (The)Korea Educational Review
    • /
    • v.23 no.1
    • /
    • pp.35-56
    • /
    • 2017
  • This study is to examine the effects of gesture based interface and display methods to make an effective virtual learning environment. The gesture based interface can provide interactive interface to make objects in the virtual learning environment by generating natural movement of users' gesture. This natural functionality leads users to apply natural movements as they do in real actions. Because of the natural user interface, the gesture based interface is expected to maximize learning outcomes. This study examined how the gesture based interface can be used when a head mounted display is applied for a virtual reality learning environment. For this study 44 colleagues students were participated. Two display methods (head mounted display vs. monitor) and two interface (gesture based interface vs. joystick) were tested to identify which might be more effective. The study was applied to different learning tasks which require different levels of spatial perception. The dependent variables are three constructs of virtual presence (spatial perception, immersiveness, and realness) and task completion time and recall tests. This study discussed potential disadvantages of gesture based interface while it showed positive usages of gesture based interface.

An Efficient ECU Analysis Technology through Non-Random CAN Fuzzing (Non-Random CAN Fuzzing을 통한 효율적인 ECU 분석 기술)

  • Kim, Hyunghoon;Jeong, Yeonseon;Choi, Wonsuk;Jo, Hyo Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1115-1130
    • /
    • 2020
  • Modern vehicles are equipped with a number of ECUs(Electronic Control Units), and ECUs can control vehicles efficiently by communicating each other through CAN(Controller Area Network). However, CAN bus is known to be vulnerable to cyber attacks because of the lack of message authentication and message encryption, and access control. To find these security issues related to vehicle hacking, CAN Fuzzing methods, that analyze the vulnerabilities of ECUs, have been studied. In the existing CAN Fuzzing methods, fuzzing inputs are randomly generated without considering the structure of CAN messages transmitted by ECUs, which results in the non-negligible fuzzing time. In addition, the existing fuzzing solutions have limitations in how to monitor fuzzing results. To deal with the limitations of CAN Fuzzing, in this paper, we propose a Non-Random CAN Fuzzing, which consider the structure of CAN messages and systematically generates fuzzing input values that can cause malfunctions to ECUs. The proposed Non-Random CAN Fuzzing takes less time than the existing CAN Fuzzing solutions, so it can quickly find CAN messages related to malfunctions of ECUs that could be originated from SW implementation errors or CAN DBC(Database CAN) design errors. We evaluated the performance of Non-Random CAN Fuzzing by conducting an experiment in a real vehicle, and proved that the proposed method can find CAN messages related to malfunctions faster than the existing fuzzing solutions.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

Effect of Curing Solution and Pre-Rust Process on Rebar Corrosion in the Cement Composite (시멘트 복합체 내부 철근 부식에 양생 용액과 철근 사전 부식이 미치는 영향)

  • Du, Rujun;Jang, Indong;Lee, Hyerin;Yi, Chongku
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The corrosion of reinforcement is the main reason for the performance degradation of concrete structures. The pre-rusted parts of rebar in concrete structures are vulnerable to the corrosion, especially if the structure is exposed to wet or chlorinated environments. In this study, effects of different curing solution on corrosion behavior of the pre-rusted rebars in the cement composites were investigated. HCl(3%) and CaCl2(10%) solution were utilized to accelerate the pre-rust of the rebar, and each pre-rust condition rebar including reference (RE) were placed in mortar cylinder. Three kinds of samples then were cured in CaCl2 (3%) solution and tap water respectively for 120 days. Electrochemical polarization and half-cell potential measurement were used to monitor the influence of curing water on the corrosion behavior of pre-rusted steel bar in cement composite. The surface morphology and composition of corroded steel bar were analyzed by scanning electron microscope and energy dispersive X-ray diffraction. The results show that the corrosion rates of pre-rusted samples in both curing water are higher than that of non-pre-rusted samples. The corrosion rates of RE, CaCl2 and HCl pre-rusted samples in salt water were 8.14, 4.48, 13.81 times higher than those in tap water respectively, on the 120th day.

Detection of Marine Oil Spills from PlanetScope Images Using DeepLabV3+ Model (DeepLabV3+ 모델을 이용한 PlanetScope 영상의 해상 유출유 탐지)

  • Kang, Jonggu;Youn, Youjeong;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Yang, Chan-Su;Yi, Jonghyuk;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1623-1631
    • /
    • 2022
  • Since oil spills can be a significant threat to the marine ecosystem, it is necessary to obtain information on the current contamination status quickly to minimize the damage. Satellite-based detection of marine oil spills has the advantage of spatiotemporal coverage because it can monitor a wide area compared to aircraft. Due to the recent development of computer vision and deep learning, marine oil spill detection can also be facilitated by deep learning. Unlike the existing studies based on Synthetic Aperture Radar (SAR) images, we conducted a deep learning modeling using PlanetScope optical satellite images. The blind test of the DeepLabV3+ model for oil spill detection showed the performance statistics with an accuracy of 0.885, a precision of 0.888, a recall of 0.886, an F1-score of 0.883, and a Mean Intersection over Union (mIOU) of 0.793.

Reliability and utility of a Dry Test Bench for testing the acoustic output from a ballistic shock wave therapeutic device (탄도형 충격파 치료기의 음향 출력 시험을 위한 Dry Test Bench의 신뢰성 및 유용성)

  • Jeon, Sung Joung;Lee, Min Young;Kwon, Oh Bin;Kim, Jong Min;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.589-600
    • /
    • 2022
  • In order to verify the reliability of Dry Test Bench (DTB) used for testing the output energy from ballistic extracorporeal shock wave therapeutic devices, the measurements with DTB were compared with the acoustic energy measured with a Laser Doppler Vibrometer (LDV) for a commercial ballistic ESWT device. It was shown that the mechanical energy detected with DTB had variability maintained within 5 % at the same output power setting and also had a linear correlation (adj. R2 = 0.991) with the acoustic energy measured with the LDV for the entire output power settings. Using the correlation between the two methods and the correlation on the acoustic energy measured in between air and water with the LDV, the DTB measurement can be used to estimate the energy flux density in water with an average error of 7.85 % for the entire output power settings of the ballistic shock wave generator considered in the experiment. DTB provides information limited to the output mechanical energy and therefore it is not suitable for testing the various acoustic output parameters required in IEC61846 and IEC63045. However, DTB that is simple in measurement principles and easy to use is expected for manufacturers and clinical users to monitor the performance of ballistic Extracorporeal Shock Wave Therapy (ESWT) devices.

Grade Analysis and Two-Stage Evaluation of Beef Carcass Image Using Deep Learning (딥러닝을 이용한 소도체 영상의 등급 분석 및 단계별 평가)

  • Kim, Kyung-Nam;Kim, Seon-Jong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.385-391
    • /
    • 2022
  • Quality evaluation of beef carcasses is an important issue in the livestock industry. Recently, through the AI monitor system based on artificial intelligence, the quality manager can receive help in making accurate decisions based on the analysis of beef carcass images or result information. This artificial intelligence dataset is an important factor in judging performance. Existing datasets may have different surface orientation or resolution. In this paper, we proposed a two-stage classification model that can efficiently manage the grades of beef carcass image using deep learning. And to overcome the problem of the various conditions of the image, a new dataset of 1,300 images was constructed. The recognition rate of deep network for 5-grade classification using the new dataset was 72.5%. Two-stage evaluation is a method to increase reliability by taking advantage of the large difference between grades 1++, 1+, and grades 1 and 2 and 3. With two experiments using the proposed two stage model, the recognition rates of 73.7% and 77.2% were obtained. As this, The proposed method will be an efficient method if we have a dataset with 100% recognition rate in the first stage.

Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection (SARS-CoV-2 감염의 진단에 이용되는 검사실 테스트의 비교)

  • Lee, Chang-Gun;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.79-94
    • /
    • 2022
  • Due to the highly contagious nature and severity of the respiratory diseases caused by COVID-19, economical and accurate tests are required to better monitor and prevent the spread of this contagion. As the structural and molecular properties of SARS-CoV-2 were being revealed during the early stage of the COVID-19 pandemic, many manufacturers of COVID-19 diagnostic kits actively invested in the design, development, validation, verification, and implementation of diagnostic tests. Currently, diagnostic tests for SARS-CoV-2 are the most widely used and validated techniques for rapid antigen, and immuno-serological assays for specific IgG and IgM antibody tests and molecular diagnostic tests. Molecular diagnostic assays are the gold standard for direct detection of viral RNA in individuals suspected to be infected with SARS-CoV-2. Antibody-based serological tests are indirect tests applied to determine COVID-19 prevalence in the community and identify individuals who have obtained immunity. In the future, it is necessary to explore technical problems encountered in the early stages of global or regional outbreaks of pandemics and provide future directions for better diagnostic tests. This article evaluates the commercially available and FDA-approved molecular and immunological diagnostic assays and analyzes their performance characteristics.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.