• Title/Summary/Keyword: performance characterization

Search Result 1,052, Processing Time 0.028 seconds

Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs

  • Ue-Hwan Kim;Moon Young Kim;Eun-Ah Park;Whal Lee;Woo-Hyun Lim;Hack-Lyoung Kim;Sohee Oh;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1918-1928
    • /
    • 2021
  • Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed. Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn). Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001). Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice.

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment (K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능)

  • Choi, Poo Reum;Jung, Ji Chul;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.26 no.9
    • /
    • pp.460-467
    • /
    • 2016
  • Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

A New Methodology for Software Module Characterization

  • Shin, Miyoung;Nam, Yunseok
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.434-437
    • /
    • 1999
  • The primary aim of this paper is to introduce and illustrate a radial basis function (RBF) modeling approach fur software module characterization, as an alternative to current techniques. The RBF model has been known to provide a rich analytical framework fur a broad class of so-called pattern recognition problems. Especially, it features both nonlinearity and linearity which in general are treated separately by its learning algorithm, leading to offer conceptual and computational advantages. Furthermore, our new modeling methodology fer determining model parameters has a sound mathematical basis and showed very interesting results in terms of model consistency as well as performance.

  • PDF

Fabrication of caterpillar mixer and its surface characterization (캐터필러형 믹서의 제작 및 표면 특성 연구)

  • Han Chang-Soo;Park June-Ki;Yoon Yeo-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.541-542
    • /
    • 2006
  • A micro-size caterpillar mixer has been recently used fur desktop chemical factory and so attractive due to small investment fund for arranging the factory and high efficiency by mixing in sub micro-level region. We report the fabrication of caterpillar mixer and its surface treatment for enhancement of mixing performance. We used the

  • PDF

Characterization of Spherical Particles by Light Scattering

  • Sangwook Park;Jungmoon Sung;Taihyun Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.322-328
    • /
    • 1991
  • We have studied a characterization method of accurate size of spherical particles by fitting experimental light scattering profile to the rigorous theoretical scattering function. An efficient software has been developed for computation of the theoretical scattering function and regression analysis. A light scattering instrument has been built and the necessary data acquisition and analysis are carried out by use of a personal computer with an emphasis on the reduction of analysis and time aiming that this study will be extended toward a development of a practical particle sizing apparatus. The performance of the instrument and the software has been evaluated with latex spheres and found to be satisfactory.

Computer-aided polyp characterization in colonoscopy: sufficient performance or not?

  • Natalie Halvorsen;Yuichi Mori
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.18-23
    • /
    • 2024
  • Computer-assisted polyp characterization (computer-aided diagnosis, CADx) facilitates optical diagnosis during colonoscopy. Several studies have demonstrated high sensitivity and specificity of CADx tools in identifying neoplastic changes in colorectal polyps. To implement CADx tools in colonoscopy, there is a need to confirm whether these tools satisfy the threshold levels that are required to introduce optical diagnosis strategies such as "diagnose-and-leave," "resect-and-discard" or "DISCARD-lite." In this article, we review the available data from prospective trials regarding the effect of multiple CADx tools and discuss whether they meet these thresholds.

A NUMERICAL SIMULATION FOR THE PERFORMANCE CHARACTERIZATION OF HEAT SINKS (Heat Sink의 특성확인을 위한 수치적 Simulation)

  • Kim, Chang Nyung;Moon, Sung-il
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.147-156
    • /
    • 1999
  • A numerical simulation has been carried out for the performance characterization of heat sinks in electronic equipment. Heat transfer characteristics have been analyzed for various design parameters including the shape of heat sink, thickness of fin base and fin pitches. A commercial program called Flotherm has been employed for the numerical calculation. Optimal design of the heat sink has been persued which is closely related with the reduction of heat resistance involved in conduction and convection of heat.

  • PDF

Modular and versatile platform for the benchmarking of modern actuators for robots

  • Garcia, Elena;Gonzalez-de-Santos, Pablo
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.135-161
    • /
    • 2013
  • This work presents a test platform for the assessment and benchmarking of modern actuators which have been specifically developed for the new field and service robotics applications. This versatile platform has been designed for the comparative analysis of actuators of dissimilar technology and operating conditions. It combines a modular design to adapt to linear and rotational actuators of different sizes, shapes and functions, as well as those with different load capacities, power and displacement. This test platform emulates the kinematics of robotic joints while an adaptive antagonist-load actuator allows reproducing the variable dynamic loads that actuators used in real robotics applications will be subjected to. A data acquisition system is used for monitoring and analyzing test actuator performance. The test platform combines hardware and software in the loop to allow actuator performance characterization. The use of the proposed test platform is demonstrated through the characterization and benchmarking of three controllable impedance actuators recently being incorporated into modern robotics.

Characterization of high performance CNT-based TSV for high-frequency RF applications

  • Kannan, Sukeshwar;Kim, Bruce;Gupta, Anurag;Noh, Seok-Ho;Li, Li
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • In this paper, we present modeling and characterization of CNT-based TSVs to be used in high-frequency RF applications. We have developed an integrated model of CNT-based TSVs by incorporating the quantum confinement effects of CNTs with the kinetic inductance phenomenon at high frequencies. Substrate parasitics have been appropriately modeled as a monolithic microwave capacitor with the resonant line technique using a two-polynomial equation. Different parametric variations in the model have been outlined as case studies. Furthermore, electrical performance and signal integrity analysis on different cases have been used to determine the optimized configuration for CNT-based TSVs for high frequency RF applications.