DOI QR코드

DOI QR Code

Structural Characterization and EDLC-Electrode Performance of Coal-Tar-Pitch Activated Carbon Using K2CO3 Treatment

K2CO3 처리된 Coal Tar Pitch 활성탄 전극의 결정성 및 EDLC 성능

  • Choi, Poo Reum (Department of Chemical Engineering, Myongji University) ;
  • Jung, Ji Chul (Department of Chemical Engineering, Myongji University) ;
  • Lim, Yun-Soo (Department of Materials Science and Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
  • Received : 2016.06.27
  • Accepted : 2016.07.26
  • Published : 2016.09.27

Abstract

Activated carbons (ACs) have been used as EDLC (electric double-layer capacitor) electrode materials due to their high specific area, stability, and ecological advantages. In order to prepare ACs with high density and crystallinity, coal tar pitch (CTP) was activated by $K_2CO_3$ and the textural and electrochemical properties of the obtained ACs were investigated. Although the CTP ACs formed by $K_2CO_3$ activation had much smaller specific surface area and pore volume than did the CTP ACs formed by KOH activation, their volumetric specific capacitance (F/cc) levels as electrode materials for EDLC were comparable due to their higher density and micro-crystallinity. Structural characterization and EDLC-electrode performance were studied with different activation conditions of $CTP/K_2CO_3$ ratio, activation temperature, and activation period.

Keywords

References

  1. A. G. Pandolfo and A. F. Hollenkamp, J. Power Source, 157, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  2. S. Mitani, S. I. Lee, K. Saito, Y. Korai and I. Mochida, Electrochim. Acta, 51, 5487 (2006). https://doi.org/10.1016/j.electacta.2006.02.040
  3. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo and Y. S. Lee, J. Colloid Interface Sci., 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  4. T. Aida, I. Murayama, K. Yamada and M. Morita, J. Power Source, 166, 462 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.037
  5. K. C. Roh, J. B. Park, C. T. Lee and C. W. Park, J. Ind. Eng. Chem., 14, 247 (2008). https://doi.org/10.1016/j.jiec.2007.08.012
  6. P. R. Choi, E. J. Lee, S. H. Kwon, J. C. Jung and M. S. Kim, J. Phys. Chem. Solid., 87, 72 (2015). https://doi.org/10.1016/j.jpcs.2015.08.007
  7. I. G. Inal, S. M. Holmes, A. Banford and Z. Aktas, Appl. Surf. Sci., 357, 696 (2015). https://doi.org/10.1016/j.apsusc.2015.09.067
  8. T. Tay, S. Usca and S. Karagoz, J. Hazard Mater., 165, 481 (2009). https://doi.org/10.1016/j.jhazmat.2008.10.011
  9. T. Ohta, I. T. Kim, M. Egashira, N. Yoshimoto and M. Morita, J. Power Source, 198, 408 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.006
  10. P. W. Ruch, M. Hahn, D. Cericola, A. Menzel, R. Kotz and A. Wokaun, Carbon, 48, 1880 (2010). https://doi.org/10.1016/j.carbon.2010.01.032
  11. H. Deng, G. Li, H. Yang, J. Tang and J. Tang, Chem. Eng. J., 163, 373 (2010). https://doi.org/10.1016/j.cej.2010.08.019
  12. Y. T. Li, Y. T. Pi, L. M. Lu, S. H. Xu and T. Z. Ren, J. Power Source, 299, 519 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.039
  13. Y. Gao, Q. Yue, S. Xu and B. Gao, Mater Lett., 146, 34 (2015). https://doi.org/10.1016/j.matlet.2015.01.161
  14. S. Mitani, S. I. Lee, K. Saito, S. H. Yoon, Y. Korai and I. Mochida, Carbon, 43, 2960 (2005). https://doi.org/10.1016/j.carbon.2005.05.047
  15. Y. W. Xue, C. L. Yang, Y. G. Lu, H. Q. Rong, P. Wang and D. Pan, New Carbon Mater., 23, 75 (2008). https://doi.org/10.1016/S1872-5805(08)60013-X
  16. T. Tomko, R. Rajagopalan, M. Lanagan and H. C. Foley, J. Power Source, 196, 2380 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.004
  17. B. Manoj and A. G. Kunjumana, Int. J. Electrochem. Sci., 7, 3127 (2012).
  18. O. O. Sonibare, T. Haeger and S. F. Foley, Energy, 35, 5353 (2010).
  19. E. J. Lee, S. H. Kwon, P. R. Choi, J. C. Jung and M. S. Kim, Carbon Lett., 16, 78 (2015). https://doi.org/10.5714/CL.2015.16.2.078
  20. E. J. Lee, S. H. Kwon, P. R. Choi, J. C. Jung and M. S. Kim, J. Korean Oil Chem. Soc., 31, 408 (2014). https://doi.org/10.12925/jkocs.2014.31.3.408
  21. X. Li, X. Luo, L. Dou and K. Chen, BioResources, 11, 2096 (2016).
  22. J. Hayashi, N. Yamamoto, T. Horikawa, K. Muroyama and V. G. Gomes, J. Colloid Interface Sci., 281, 437 (2005). https://doi.org/10.1016/j.jcis.2004.08.092
  23. H. Xiao, H. Peng, S. Deng, X. Yang, Y. Zhang and Y. Li, Biores. Technol., 111, 127 (2012). https://doi.org/10.1016/j.biortech.2012.02.054
  24. C. Zheng, J. Gao, M. Yochio, L. Qi and H. Wang, J. Power Source, 231, 29 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.041
  25. K. C. Roh, J. B. Park, C. T. Lee and C. W. Park, J. Ind. Eng. Chem., 14, 247 (2008). https://doi.org/10.1016/j.jiec.2007.08.012
  26. K. C. Roh, J. B. Park and C. W. Park, J. Korean Ind. Eng. Chem., 18, 599 (2007).
  27. M. Morita, R. Arizono, N. Yoshimoto and M. Egashira, J. Appl. Electrochem., 44, 447 (2014). https://doi.org/10.1007/s10800-013-0634-2