• Title/Summary/Keyword: perceptron

Search Result 832, Processing Time 0.022 seconds

Control of Feed Rate Using Neurocontroller Incorporated with Genetic Algorithm in Fed-Batch Cultivation of Scutellaria baicalensis Georgi

  • Choi, Jeong-Woo;Lee, Woochang;Cho, Jin-Man;Kim, Young-Kee;Park, Soo-Yong;Lee, Won-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.687-691
    • /
    • 2002
  • To enhance the production of flavonoids [baicalin, wogonin-7-Ο-glucuronic acid (GA)], which are secondary metabolites of Scutellaria baicalensis Georgi(G.) plant cells, a multilayer perceptron control system was applied to regulate the substrate feeding in a fed-batch cultivation. The optimal profile for the substrate feeding rate in a fed-batch culture of S. baicalensis G. was determined by simulating a kinetic model using a genetic algorithm. Process variable profiles were then prepared for the construction of a multilayer perceptron controller that included massive parallelism, trainability, and fault tolerance. An error back-propagation algorithm was applied to train the multiplayer perceptron. The experimental results showed that neurocontrol incorporated with a genetic algorithm improved the flavonoid production compared with a simple fuzzy logic control system. Furthermore, the specific production yield and flavonoid productivity also increased.

Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식)

  • Moon, Un-Chul;Lee, Jae-Du
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.94-101
    • /
    • 2007
  • In the Hard Disk Drive(HDD) production, the detect pattern or defective HDD set is important information to diagnosis of defective HDD set. This paper proposes a pattern recognition neural network for the defect distribution of HDD. In this paper, 5 characteristics are determined for the classification to six standard defect pattern classes. A multi-layer perceptron is trained for the pattern classification the inputs of which are 5 characteristic values and the 6 outputs are the nodes of standard patterns. The experiment with proposed neural network shows satisfactory results.

Searching a global optimum by stochastic perturbation in error back-propagation algorithm (오류 역전파 학습에서 확률적 가중치 교란에 의한 전역적 최적해의 탐색)

  • 김삼근;민창우;김명원
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.3
    • /
    • pp.79-89
    • /
    • 1998
  • The Error Back-Propagation(EBP) algorithm is widely applied to train a multi-layer perceptron, which is a neural network model frequently used to solve complex problems such as pattern recognition, adaptive control, and global optimization. However, the EBP is basically a gradient descent method, which may get stuck in a local minimum, leading to failure in finding the globally optimal solution. Moreover, a multi-layer perceptron suffers from locking a systematic determination of the network structure appropriate for a given problem. It is usually the case to determine the number of hidden nodes by trial and error. In this paper, we propose a new algorithm to efficiently train a multi-layer perceptron. OUr algorithm uses stochastic perturbation in the weight space to effectively escape from local minima in multi-layer perceptron learning. Stochastic perturbation probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the probabilistically re-initializes weights associated with hidden nodes to escape a local minimum if the EGP learning gets stuck to it. Addition of new hidden nodes also can be viewed asa special case of stochastic perturbation. Using stochastic perturbation we can solve the local minima problem and the network structure design in a unified way. The results of our experiments with several benchmark test problems including theparity problem, the two-spirals problem, andthe credit-screening data show that our algorithm is very efficient.

  • PDF

Research on Model to Diagnose Efficiency Reduction of Inverters using Multilayer Perceptron (다층 퍼셉트론을 이용한 인버터의 효율 감소 진단 모델에 관한 연구)

  • Jeong, Ha-Young;Hong, Seok-Hoon;Jeon, Jae-Sung;Lim, Su-Chang;Kim, Jong-Chan;Park, Chul-Young
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1448-1456
    • /
    • 2022
  • This paper studies a model to diagnose efficiency reduction of inverter using Multilayer Perceptron(MLP). In this study, two inverter data which started operation at different day was used. A Multilayer Perceptron model was made to predict photovoltaic power data of the latest inverter. As a result of the model's performance test, the Mean Absolute Percentage Error(MAPE) was 4.1034. The verified model was applied to one-year-old and two-year-old data after old inverter starting operation. The predictive power of one-year-old inverter was larger than the observed power by 724.9243 on average. And two-year-old inverter's predictive value was larger than the observed power by 836.4616 on average. The prediction error of two-year-old inverter rose 111.5572 on a year. This error is 0.4% of the total capacity. It was proved that the error is meaningful difference by t-test. The error is predicted value minus actual value. Which means that PV system actually generated less than prediction. Therefore, increasing error is decreasing conversion efficiency of inverter. Finally, conversion efficiency of the inverter decreased by 0.4% over a year using this model.

(Efficient Methods for Combining User and Article Models for Collaborative Recommendation) (협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법)

  • 도영아;김종수;류정우;김명원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.540-549
    • /
    • 2003
  • In collaborative recommendation two models are generally used: the user model and the article model. A user model learns correlation between users preferences and recommends an article based on other users preferences for the article. Similarly, an article model learns correlation between preferences for articles and recommends an article based on the target user's preference for other articles. In this paper, we investigates various combination methods of the user model and the article model for better recommendation performance. They include simple sequential and parallel methods, perceptron, multi-layer perceptron, fuzzy rules, and BKS. We adopt the multi-layer perceptron for training each of the user and article models. The multi-layer perceptron has several advantages over other methods such as the nearest neighbor method and the association rule method. It can learn weights between correlated items and it can handle easily both of symbolic and numeric data. The combined models outperform any of the basic models and our experiments show that the multi-layer perceptron is the most efficient combination method among them.

Method for Automatic Switching Screen of OST-HMD using Gaze Depth Estimation (시선 깊이 추정 기법을 이용한 OST-HMD 자동 스위칭 방법)

  • Lee, Youngho;Shin, Choonsung
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we propose automatic screen on / off method of OST-HMD screen using gaze depth estimation technique. The proposed method uses MLP (Multi-layer Perceptron) to learn the user's gaze information and the corresponding distance of the object, and inputs the gaze information to estimate the distance. In the learning phase, eye-related features obtained using a wearable eye-tracker. These features are then entered into the Multi-layer Perceptron (MLP) for learning and model generation. In the inference step, eye - related features obtained from the eye tracker in real time input to the MLP to obtain the estimated depth value. Finally, we use the results of this calculation to determine whether to turn the display of the HMD on or off. A prototype was implemented and experiments were conducted to evaluate the feasibility of the proposed method.

Mobile Router Decision Using Multi-layered Perceptron in Nested Mobile Networks (중첩 이동 네트워크에서 Multi-layered Perceptron을 이용한 최적의 이동 라우터 지정 방안)

  • Song, Jiyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2843-2852
    • /
    • 2013
  • In the nested mobile network environment, the mobile node selects one of multiple mobile routers. The MR(Mobile Router) by existing top-down or bottom-up methods may not be the optimal MR if the numbers of mobile nodes and routers are substantially increased, and the scale of the network is increased drastically. Since an inappropriate MR decision causes handover or binding renewal to mobile nodes, determining of the optimal MR is important for efficiency. In this paper, we propose an algorithm that decides on the optimal MR using MR QoS(Quality of Service) information, and we describe how to understand the various structured MLP(Multi-Layered Perceptron) based on the algorithm. In conclusion, we prove the ability of the suggested neural network for a nesting mobile network through the performance analysis of each learned MLP.

An Enhanced Fuzzy Single Layer Perceptron With Linear Activation Function (선형 활성화 함수를 이용한 개선된 퍼지 단층 퍼셉트론)

  • Park, Choong-Shik;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1387-1393
    • /
    • 2007
  • Even if the linearly separable patterns can be classified by the conventional single layer perceptron, the non-linear problems such as XOR can not be classified by it. A fuzzy single layer perceptron can solve the conventional XOR problems by applying fuzzy membership functions. However, in the fuzzy single layer perception, there are a couple disadvantages which are a decision boundary is sometimes vibrating and a convergence may be extremely lowered according to the scopes of the initial values and learning rates. In this paper, for these reasons, we proposed an enhanced fuzzy single layer perceptron algorithm that can prevent from vibration the decision boundary by introducing a bias term and can also reduce the learn time by applying the modified delta rule which include the learning rates and the momentum concept and applying the new linear activation function. Consequently, the simulation results of the XOR and pattern classification problems presented that the proposed method provided the shorter learning time and better convergence than the conventional fuzzy single layer perceptron.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Parity Discrimination by Perceptron Neural Network (퍼셉트론형 신경회로망에 의한 패리티판별)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.565-571
    • /
    • 2010
  • This paper proposes a parity discrimination algorithm which discriminates N bit parity using a perceptron neural network and back propagation algorithm. This algorithm decides minimum hidden unit numbers when discriminates N bit parity. Therefore, this paper implements parity discrimination experiments for N bit by changing hidden unit numbers of the proposed perceptron neural network. Experiments confirm that the proposed algorithm is possible to discriminates N bit parity.