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Abstract To enhance the production of flavonoids [baicalin,
wogonin-7-O-glucuronic acid (GA)], which are secondary
metabolites of Scutellaria baicalensis Georgi(G.) plant cells,
a multilayer perceptron control system was applied to
regulate the substrate feeding in a fed-batch cultivation. The
optimal profile for the substrate feeding rate in a fed-batch
culture of S. baicalensis G. was determined by simulating a
kinetic model using a genetic algorithm. Process variable profiles
were then prepared for the construction of a multilayer
perceptron controller that included massive parallelism,
trainability, and fault tolerance. An error back-propagation
algorithm was applied to train the multiplayer perceptron. The
experimental results showed that neurocontrol incorporated
with a genetic algorithm improved the flavonoid production
compared with a simple fuzzy logic control system. Furthermore,
the specific production yield and flavonoid productivity also
increased.
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Higher plants represent a valuable resource for a great
variety of special chemicals, including pharmaceuticals
(ajamalcine, berbine, codeine, digoxin, reserpine, and
vincristine), flavors and fragrances (strawberry, vanilla,
and rose), pigments (anthocyanins, betacyanins, shikonin,
and saffron), and fine chemicals (pyrethrin, salannin, and
protease) which are mostly typical secondary metabolites
that are biosynthesized from primary metabolites. Recent
improvements in plant cell and tissue culture techniques

have been proposed as an alternative for the production of -

plant-derived chemicals [3, 13, 18, 19].
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Scutellaria baicalensis Georgi(G.) is an important
medicinal herb that is widely used for the treatment of
various inflammatory diseases, hepatitis, tumors, and
diarrhea in East Asian countries such as China, Korea, and
Japan [9]. Its ether extract is reported to have a potent
cytotoxic principle against L1210 cells, and exhibit antitumor
activity to Sarcoma-180 in mice [1]. The roots of S
baicalensis G. are known to contain a large number (over
40) of flavonoids, frequently identified as glucuronides.
The major products are baicalin, baicalein, wogonin, and
wogonin-7-O-glucuronic acid(GA) [23, 24].

One important goal in a plant cell culture is to enhance
the yield of the product. Therefore, to enhance the
production of secondary metabolites in a plant cell culture,
operating and control strategies that consider the different
stages related to the cellular differentiation and secondary
metabolite production of the plant cells are required [16,
27]. Accordingly, the current study investigated the time-
course profile of the optimal substrate feeding rate as
an optimal bioreactor operating strategy using a genetic
algorithm, mathematical kinetic model, and determined initial
substrate concentration for the construction of a bioreactor
operating strategy [6].

Since the relationship between the state variables and
the control variables can not be clearly defined by a simple
function and unpredictable probability factors existing in a
bioprocess, the bioreactor operation usually depends on
expert experience and imagination [12]. As such, the
control of a plant cell culture process using a classical
controller is very difficult because complicated quantitative
knowledge of the processes under the influence of the
control variables is required [5,6]. To overcome these
difficulties, a fuzzy control system has been proposed [6].
In addition, artificial neural network is well-known to be
suitable for monitoring and controlling knowledge-poor
processes, since it can perform rational reasoning with a
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precise mathematical model of the process, work with
incomplete process information, and handle a large
amount of information quickly through parallel processing
[21, 25]. In the current study, a multiplayer perceptron is
applied to control the substrate feeding in the fed-batch
cultivation of S. baicalensis G. plant cells. Profiles of the
optimal glucose feeding rate and process variables, prepared
by a genetic algorithm based on the simulation of a kinetic
model, are used as the learning input-output data set for the
multiplayer perceptron. The trained neural network is then
successfully applied to regulate the substrate feeding rate
using the model reference adaptive control method. The
performance of the neurocontrol system is evaluated
through the production of flavonoids and compared with
that of a simple fuzzy control system [6].

The callus and suspension cultures, cell dry weight,
glucose concentration, and flavonoid analysis of the S.
baicalensis G. plant cells were all performed in the same
way as in a simple fuzzy control system [6, 15, 22]. Because
controlling the substrate feeding can promote the productivity
of the target metabolites, a fed-batch culture system is the
most effective bioreactor operating system [8, 11, 26]. The
bioreactor operating system was also set up in the same
way as in a simple fuzzy control system [6]. The bioreactor
control logic was coded with C language.

Artificial neural networks (ANNs) have recently received
considerable attention in the control community, mainly
due to their powerful mapping capacity, trainability property,
real-time adaptation without instability, handling of severe
nonlinearity and noise, and parallel implementation paradigm,
thereby leading to the emergence of a new term,
neurocontrol [4, 10]. On the basis of the above merits, the
ANNs are now widely used in many nonlinear control
applications [17, 20].

To enhance the production of flavonoids in a fed-batch
cultivation of S. baicalensis G., a multilayer perceptron
controller was applied using the model-reference adaptive
control method, where the goal is to generate a control
input signal so that the system follows a desired trajectory
determined by the reference model. In a back-propagation
neural network, the function is commonly in the form of a
sigmoid function in order to obtain a signal between 0 and
112].

yi:g(xi):|:1+6Xp[ixjwjj+9}-]:| (1)
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where X; is the input signal, y, is the fired output signal, w;
is the weight associated with the input signal x,, and ; is
the threshold value of neuron j.

In order to make the multilayer perceptron an actual
controller, a supervised learning method was adopted,
whereby the neural network was trained to map the input

sensor signals onto the desired outputs - the glucose
feeding rates. The actual adjustment of the connection
weights for a bioprocess application was performed using
an error back-propagation (BP) algorithm, which is
basically a form of the gradient descent method, meaning
that the output-layer errors are successfully propagated
backwards through the network. The error for training the
neural network was defined by the following equation (2):

E=%§(yi —dy @

where y, is the fired output and d, is the desired output from
neuron i. A schematic description of the artificial neural
network training is shown in Fig. 1.

Based on the constructed kinetic model for the batch
culture and proposed bioreactor operating strategy [6,
14], the optimal glucose feeding profile was heuristically
investigated, and the input-output data set for training the
artificial neural network was prepared through a fed-batch
kinetic model simulation using a genetic algorithm. A
genetic algorithm is a type of stochastic search method
based on the principles of three operators; reproduction,
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Fig. 1. Schematic diagram of artificial neural network training
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Fig. 2. Fitness value with each generation.

crossover, and mutation, as inspired by Darwin’s evolution
theory; natural evolution of selection by fitness [7]. The
algorithm represents the search variables as a binary coded
string, referred to as a chromosome. A population of
chromosomes is then prepared and their performances are
evaluated by actually applying these binary encoded parameters
to the objective system. The performance measure is a real
number, referred to as a fitness value. The initial parameters
for the implementation of the genetic algorithm were as
follows; number of population, 20; length of individual,
280; crossover rate, 1.0; mutation rate, 0.03. The chromosome
consisted of 40 fragments of substrate feed rate. The
substrate feed rate was determined between 0 and 0.1 ml/min.
The fitness value was defined, as shown in equation (3).

Fitness=AxB 3)

where B is the concentration of baicalin and A is the
normalization factor.

Figure 2 shows the fitness value changes with various
generations. The vertical axis is the normalization value
of the maximum baicalin production in each generation
at the end of the fed-batch cultivation, and the fitness
increased almost monotonically in accordance with each
generation. The maximum fitness was achieved after
the 31st generation. Although slight differences existed
among the fitness parameters, the population became
saturated at the maximum values. The differences were
considered to be drift due to the characteristics of the
proposed genetic algorithm. Accordingly, it was concluded
that the genetic algorithm could optimize the profile of the
substrate feeding rate within a short period of trials, and it
could be used to calculate the process variable profiles
(glucose concentration, cell dry weight, and flavonoids
production) based on a simulated fed-batch cultivation of
S. baicalensis G.

Using the genetic algorithm, the optimal profiles of the
glucose feeding rate and process variables were heuristically
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decided based on a simulated fed-batch cultivation using a
kinetic model. Figure 3 shows the time-course profiles
of the process variables in the fed-batch culture using
the fittest substrate feeding rate profile. The optimal
glucose feeding rate and simulated process variable
profiles were utilized to train the artificial neural network
controller.

The multilayer perceptron was then applied to a fed-
batch cultivation of S. baicalensis G. The user-defined
parameters for the construction of the multilayer perceptron
were as follows; number of inputs, 4 (cell dry weight, glucose
concentration, baicalin, and wogonin-7-O-GA concentrations);
number of outputs, 1; number of neurons in hidden layers,
30 (1%) and 15 (2); respectively; learning rate, 0.7; and
momentum coefficient, 0.5. Figure 4 represents the change
in the cell dry weight in the neurocontrol experimental
results. The maximum cell dry weight reached 7.835 g I'',
17 days after inoculation. The glucose concentration varied

Cell dry weight (g/1), glucose (g/1)

Cultivation time (day)

(b)

Baicalin
+ » -+ Wogonin-7-0-GA

Flavonoids (g/1)

20
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Fig. 3. Profile of glucose concentration maximizing the flavonoid
production, identified by genetic algorithm and process variable
profiles, in fed-batch cultivation of S. baicalensis G.
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Fig. 4. Experimental results of fed-batch culture using a
neurocontroller. (a) Cell dry weight and glucose, (b) flavonoid
production.

Symbols: cell dry weight (B); glucose (3 ); baicalin (@®); wogonin-7-O-
GA (0).

smoothly for the entire period of the fed-batch culture. The
maximum production of baicalin and wogonin-7-O-GA
was 2.042 g I'' and 1.098 g I'', respectively. The flavonoid
production in a two-stage culture using the neurocontrol

was higher than that in the batch culture, and the specific
production yield and flavonoid productivity were increased.
When compared with simple fuzzy logic control, the actuation
speed with respect to errors in the state variables was slow.
Therefore, this suggested that a rapid response to a
variation in the glucose concentration resulted in an unstable
change in the overall process or disturbance. Because
the characteristics of a plant cell culture process include
sensitivity to environmental changes, a rapid change in the
glucose feeding rate had apparently a negative effect on
both the growth and flavonoid production of S. baicalensis
G. Table 1 summarizes the experimental results of the
batch culture, fed-batch culture using a simple fuzzy logic
controller, and fed-batch culture using a neurocontroller.
The specific production yield and flavonoid productivity were
both enhanced in the fed-batch culture with incorporated
neurocontroller with a genetic algorithm. This result suggested
that a set-point regulating controller that did not consider
the overall process state was ineffective. Instead, due to the
biological sensitivity of a plant cell culture process, a safe
operation is required that considers the overall process.
Accordingly, an artificial neural network appeared to be
well suited, since it can consider many process variables,
including the glucose concentration, before firing the
output signal of the glucose feeding rate. In addition, the
artificial neural network controller designed in the current
study was found to enhance the specific production rate
and productivity, as shown in Table 1. Therefore, it can be
concluded that an artificial neural network is a more
suitable controller than a fuzzy logic controller in the fed-
batch cultivation of S. baicalensis G.
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Table 1. Experimental results of batch and fed-batch cultures of S. baicalensis G.

Fed-batch culture with Fed-batch culture

Batch [6] simple fuzzy control [6] with neurocontrol

Cell dry weight (g/1) 7.610 7.394 7.835
Product (g/1)

Baicalin 1.200 1.372 2.042

Wogonin-7-O-GA 0.467 0.504 1.098
Specific production yield (g/g cell dry weight)

Baicalin 0.157 0.186 0.261

Wogonin-7-O-GA 0.061 0.068 0.140
Productivity (g/1)

Baicalin 0.060 0.069 0.102

Wogonin-7-O-GA 0.023 0.025 0.055




NOMENCLATURE

B
E
d
X
w
Y
G
A
0

: Baicalin concentration (g/1)

: Error

: Desired output (dimensionless)

: Input signal (dimensionless)

: Weight associated with input (dimensionless)
: Fired output signal (dimensionless)

reek Symbols

: Normalization factor
: Threshold for neuron
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