• 제목/요약/키워드: percentage depth dose

검색결과 56건 처리시간 0.02초

유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구 (Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter)

  • 정성훈;윤명근;김동욱;정원규;정미주;최상현
    • 한국의학물리학회지:의학물리
    • /
    • 제26권4호
    • /
    • pp.241-249
    • /
    • 2015
  • 방사선치료는 수술, 항암치료와 함께 암의 3대 치료방법으로써 많은 암환자들이 방사선치료를 받게 된다. 최대한 많은 방사선을 암에 집중시키고 최대한 적은 방사선을 주변 정상 조직에 가해주기 위해 치료 전 치료계획을 철저히 세우고 품질 관리를 시행하지만 방사선치료가 잘못 시행되어 의도치 않은 방사선이 환자에게 전달되는 의료사고가 발생하기도 한다. 이를 해결하기 위해 환자 내부의 선량을 검증하기 위한 방법을 투과선량 측정을 통한 환자 내부선량의 역추정 방법이 제시되고 있다. 본 연구에서 제시한 투과선량을 이용한 환자선량 계산 방법을 거리역자승법칙, 심부선량백분율, scatter factor를 이용한 방법으로써 실제 환자 선량 평가 가능성에 대해 균질한 물등가 팬텀을 이용한 연구이다. 투과선량에 대한 이온함과 유리선량계의 교정 결과 유리선량계의 신호값이 이온함으로 측정한 선량값에 비해 6 MV에서 0.824, 10 MV에서 0.736배인 것으로 나타났고 scatter factor는 평균적으로 1.4정도인 것으로 확인되었다. 심부선량백분율 데이터를 사용하기 위해 Mayneord F factor를 적용하였으며 위의 정보들을 이용하여 균질한 팬텀에서 알고리즘을 검증한 결과 최대 오차 약 1.65%로 계산이 정확하게 실시됨을 확인하였다.

LiF(Mg, Cu, Na, Si) 열형광선량계를 사용한 $^{60}Co\;{\gamma}^-$선의 수중 흡수선량 측정 (LiF(Mg, Cu, Na, Si) Thermoluminescent Dosimeters for In-phantom Dosimetry of $^{60}Co\;{\gamma}$-rays)

  • 김현자;정운혁;이우교;도시홍
    • Journal of Radiation Protection and Research
    • /
    • 제15권2호
    • /
    • pp.57-65
    • /
    • 1990
  • 새로 개발한 LiF(Mg, Cu, Na, Si) 열형광선량계를 사용하여 $^{60}Co$ 원격조사장치에 의한 수중흡수선량을 측정하였다. 공기중 조사선량으로 부터 TLD 공동의 흡수선량 교정인자($D_{TLD}$/TL)를 결정하였고, 수중흡수선량은 TLD 공동의 흡수선량을 측정하여 공동이론에 의해 해석하였다. $10{\times}10cm^2$$5{\times}10cm^2$의 빔 크기에서 팬텀내 여러지점에 대하여 LiF(Mg, Cu, Na, Si) TLD로 수중흡수선량을 결정하고 동일한 위치에서 NE 2561 전리함을 사용하여 측정한 값과 비교한 결과, LiF(Mg, Cu, Na, Si) TLD의 측정오차$({\pm}3%)$ 범위내에서 잘 일치 하였다. 빔의 크기가 $5{\times}5cm^2$, $10{\times}10cm^2$$30{\times}30cm^2$인 경우에 깊이-선량 백분율과 팬텀-공기 선량비를 측정하였으며 이 값들은 British Journal of Radiology(1983)의 데이터와 잘 일치하였다.

  • PDF

POLARITY AND ION RECOMBINATION CORRECTION FACTORS OF A THIMBLE TYPE IONIZATION CHAMBER WITH DEPTH IN WATER IN THE MEGAVOLTAGE BEAMS

  • Kim, Seong-Hoon;Huh, Hyun-Do;Choi, Sang-Hyun;Min, Chul-Hee;Shin, Dong-Oh;Choi, Jin-Ho
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.43-48
    • /
    • 2009
  • When the PDD (percentage depth dose) in the megavoltage beams is measured in the water phantom, the polarity and ion recombination effects of ionization chambers with depth in water are not usually taken into consideration. We try to investigate if those variations with depth should be taken into consideration or could be ignored for the thimble type semiflex ionization chamber (PTW $31010^{TM}$, SN 1551). According to the recommendation of IAEA TRS-398, the 4 representative depths of $d_s$, $d_{max}$, $d_{90}$ and $d_{50}$ were used for the electron beams. For the photon beams, the 4 depths were arbitrarily chosen for the photon beams, which were $d_s$, $d_{max}$, $d_{10}$ and $d_{20}$. For the high energy photon beam both polarity and ion recombination factors of the chamber with depth in water gives the good agreements within the maximum $\pm$0.2%, while the $C_{polS}$ with depth came within the maximum $\pm$ 0.4% and the $C_{IRS}$ within the maximum $\pm$0.6% in every electron beam used. This study shows that PDI (percentage depth ionization) could be a good approximation to PDD for the chamber used.

선형가속기의 6MV X선에 대한 소형조사면의 선량측정 (Dose Characteristics of Small Radiation Fields for 6MV X-ray of Linear Accelerator)

  • 최태진;김옥배;김영훈;손은익;김인홍
    • Radiation Oncology Journal
    • /
    • 제7권2호
    • /
    • pp.287-291
    • /
    • 1989
  • Radiation dosimetry has been extended to small fields less than $4\times4cm^2$ which may be suitable for irradiation of small intracranial tumors. Special consideration was given to the percentage depth dose and scatter correction factors with 0.14ml ion chamber, film dosimetry and TLD measurement. Calculated dose distributions were compared with measured data.

  • PDF

GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사 (Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6)

  • 안수정;이창래;백철하
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권4호
    • /
    • pp.571-575
    • /
    • 2016
  • 본 연구에서는 몬테칼로 전산모사 코드인 GATE6 (Geant4 Application for Tomographic Emission ver.6)를 사용하여 의료용 선형 가속기인 Varian사의 Clinac 21EX를 모사하고, 6 MV 광자선의 선량 특성을 평가하였다. 몬테칼로 방법은 방사선 치료시 환자 내의 선량분포를 계산하는 가장 정확한 방법으로 널리 이용되고 있다. 몬테칼로 기반의 코드를 이용하여 선형가속기의 조사 헤드부를 통과하는 입자의 흐름을 모사하는 것은 조사선량을 정량화 하는데 필요한 입자들의 에너지, 공간 분포와 같은 임상적인 빔의 특성을 결정하기 위한 실용적인 방법이다. 본 연구에서 모사한 선형가속기의 조사 헤드부는 빔 경로에 위치한 타겟, 일차 콜리메이터, 선속 평탄 필터, 이온전리함, 이차 콜리메이터로 구성된다. 모사된 선형가속기를 이용하여 선원-표면간 거리 100 cm, 조사야 $10{\times}10cm^2$ 조건에서 물팬텀 내의 광자선 에너지 스펙트럼(energy spectrum), 심부선량백분율(percentage depth dose), 선량프로파일(dose profiles)을 측정하였으며, 이 결과값을 실험 측정값과 비교하여 정확성을 검증하였다. 본 연구에서는 모사를 통한 결과값과 실험값이 매우 일치함을 보였으며, 이를 통해 GATE6 전산모사 코드는 방사선치료에 사용되는 광자선을 모사하기에 효과적임을 입증하였다.

CLINAC 1800 선형가속기의 15 MV X-선의 특성 (Characteristics of 15 MV Photon Beam from a Varian Clinac 1800 Dual Energy Linear Accelerator)

  • 김계준;이종영;박경란
    • Radiation Oncology Journal
    • /
    • 제9권1호
    • /
    • pp.131-141
    • /
    • 1991
  • 국내에서 처음으로 사용되는 CLINAC 1800에서 발생된 15MV X-선의 특성을 구하기 위하여 3 Dimensional water Phantom Dosimetry system)를 이용하여 방사선 치료에 근간이 되는 심부선량 백분율(POD), 최대 조직 비율(TMR), 편평도(beam profile), 대칭도, Wedge인자 등을 측정하였고 선량계산을 위하여 출력 인자들을 구하였다. 1. 선축상 최대치 지점(Dmax)은 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $3.0\pm0.1$ cm이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $3.1\pm0.1\;cm,2.2\pm0.1$ cm으로 조사면이 넓어지면서 측정치가 표면에 가까워지는 결과를 보였다. 2. 조직표면 선량(Surface Dose)는 SSD 100cm일때 조사면이 $10\times10cm^2$에서 $15.5\%$이였고 $4\times4cm^2,\;35\times35cm^2$에서 각각 $9.8\%\;,51.2\%$로 조사면이 넓어지면서 표면 선량은 증가하는 결과를 보였다. 3. 심부선량 백분율(PDO)은 SSD 100cm에서 측정하였고 조사면이 $10\times10cm^2$이고 10cm depth에서 $76.8\%$이였고 $80\%,\;50\%$ 선량의 깊이는 각각 $9.1\pm0.1\;cm,19.9\pm0.2\;cm$으로 측정되었다. 4. 최대조직비율(TMR)은 심부선량 백분율(PDD)로부터 계산하였고 측정값과의 차이는 $10\times10cm^2$ 조사면에서 평균 $1\;%$ 이내의 오차를 보였다. 5. 대칭도(symmetry)와 편평도(flatness)는 조사면 $10\times10cm^2$일때 각각 $0.73\%,\;2.72\%$이였다. 6. 출력인자(output factor)는 $10\times10cm^2$ 기준 조사면에서 흡수선량을 1로 하였을때 $4\times4cm^2,\;35\times35cm^2$ 조사면에서는 각각 0.927, 1.087로 측정되었는데 조사면이 증가할수록 흡수량이 증가하는 결과를 보였다. 7. Wedge factor는 $15^{\circ}\;30^{\circ}\;45^{\circ}\;60^{\circ}$를 10cm깊이에서 측정하였는데 0.825, 0.099, 0.560, 0.457로 각각 측정되었고 아크릴 0.4 mm Tray의 투과율은 0.976이였다. 8. 15 MV X-선에 의한 납벽층의 반가층 두께는 13 mm였고 Cerrobend의 반가층은 15.5 mm으로 측정되었다.

  • PDF

Geant4 Simulation에서 Linac 광자선을 이용한 폐 선량평가 (Evaluation of Lung Dose Using Linac Photon Beam in Geant 4 Simulation)

  • 장은성;이효영
    • 한국방사선학회논문지
    • /
    • 제12권4호
    • /
    • pp.443-450
    • /
    • 2018
  • Geant4 코드는 직선 가속기의 헤드 구조를 사용하여 이전에 구현된 BEAMnrC 데이터를 기반으로 선형가속기 (VARIAN CLINAC.)를 시뮬레이션하였다, 10MV 광자 선속에서 물팬텀의 심부선량백분율과 측면선량의 측정값과 Geant4를 비교 평가하였다. 선량 계산을 인체부위에 적용하기 위해 실제 환자의 Lung 부위를 5mm 간격으로 스캔하였다. Water phantom의 조사야($5{\times}5cm^2$), SAD 100cm에서 10MV 광자를 조사하여 Geant4 선량분포를 구하였다. 이 결과는 실제 환자의 폐(lung)에 흡수되는 선량을 측정하기는 어렵다 그래서 치료계획 시스템에 의한 선량을 비교하였다. 물 팬텀에서 측정된 심부선량 곡선과 Geant4에 의해 계산된 심부선량 곡선은 build-up 영역을 제외한 대부분의 깊이에서 ${\pm}3%$ 이내로 잘 일치하였다. 그러나 5cm와 20cm 지점에서 2.95%와 2.87%로 Geant4를 사용한 선량 계산에서 다소 높은 값을 보이고 있다. 이 두 지점은 Genat4의 geometry 파일을 통해 확인할 수 있었으며, 흉추와 흉골이 위치되어 선량이 증가된 것으로 알 수 있었다. 또한, cone beam CT를 적용한 결과에서 폐(lung)의 선량분포 오차는 3% 이내로 유사한 값을 얻었다. 따라서 Geant4를 이용하여 선량을 계산할 때 DICOM 파일에 직접 선량의 contour map이 표현될 수 있다면 Geant4의 임상적 적용이 다양하게 사용될 것이다.

Improvement of Calculation Accuracy in the Electron Monte Carlo Algorithm with Optional Air Profile Measurements

  • Sung, Jiwon;Jin, Hyeongmin;Kim, Jeongho;Park, Jong Min;Kim, Jung-in;Choi, Chang Heon;Chun, Minsoo
    • 한국의학물리학회지:의학물리
    • /
    • 제31권4호
    • /
    • pp.163-171
    • /
    • 2020
  • Purpose: In this study, the accuracies of electron Monte Carlo (eMC) calculation algorithms were evaluated to determine whether electron beams were modeled by optional air profiles (APs) designed for each applicator size. Methods: Electron beams with the energies of 6, 9, 12, and 16 MeV for VitalBeam (Varian Medical System, Palo Alto, CA, USA) and 6, 9, 12, 16, and 20 MeV for Clinac iX (Varian Medical System) were used. Optional APs were measured at the source-to-detector distance of 95 cm with jaw openings appropriate for each machine, electron beam energy, and applicator size. The measured optional APs were postprocessed and converted into the w2CAD format. Then, the electron beams were modeled and calculated with and without optional APs. Measured profiles, percentage depth doses, penumbras with respect to each machine, and energy were compared to calculated dose distributions. Results: For VitalBeam, the profile differences between the measurement and calculation were reduced by 0.35%, 0.15%, 0.14%, and 0.38% at 6, 9, 12, and 16 MeV, respectively, when the beams were modeled with APs. For Clinac iX, the differences were decreased by 0.16%, -0.31%, 0.94%, 0.42%, and 0.74%, at 6, 9, 12, 16, and 20 MeV, respectively, with the insertion of APs. Of note, no significant improvements in penumbra and percentage depth dose were observed, although the beam models were configured with APs. Conclusions: The accuracy of the eMC calculation can be improved in profiles when electron beams are modeled with optional APs.

A Convenient System for Film Dosimetry Using NIH-image Software

  • Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.260-262
    • /
    • 2002
  • An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30 ${\times}$ 30 ${\times}$ 15cm). The film was exposed with Cobalt-60 ${\gamma}$-ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range.

  • PDF

Comparison between Old and New Versions of Electron Monte Carlo (eMC) Dose Calculation

  • Seongmoon Jung;Jaeman Son;Hyeongmin Jin;Seonghee Kang;Jong Min Park;Jung-in Kim;Chang Heon Choi
    • 한국의학물리학회지:의학물리
    • /
    • 제34권2호
    • /
    • pp.15-22
    • /
    • 2023
  • This study compared the dose calculated using the electron Monte Carlo (eMC) dose calculation algorithm employing the old version (eMC V13.7) of the Varian Eclipse treatment-planning system (TPS) and its newer version (eMC V16.1). The eMC V16.1 was configured using the same beam data as the eMC V13.7. Beam data measured using the VitalBeam linear accelerator were implemented. A box-shaped water phantom (30×30×30 cm3) was generated in the TPS. Consequently, the TPS with eMC V13.7 and eMC V16.1 calculated the dose to the water phantom delivered by electron beams of various energies with a field size of 10×10 cm2. The calculations were repeated while changing the dose-smoothing levels and normalization method. Subsequently, the percentage depth dose and lateral profile of the dose distributions acquired by eMC V13.7 and eMC V16.1 were analyzed. In addition, the dose-volume histogram (DVH) differences between the two versions for the heterogeneous phantom with bone and lung inserted were compared. The doses calculated using eMC V16.1 were similar to those calculated using eMC V13.7 for the homogenous phantoms. However, a DVH difference was observed in the heterogeneous phantom, particularly in the bone material. The dose distribution calculated using eMC V16.1 was comparable to that of eMC V13.7 in the case of homogenous phantoms. The version changes resulted in a different DVH for the heterogeneous phantoms. However, further investigations to assess the DVH differences in patients and experimental validations for eMC V16.1, particularly for heterogeneous geometry, are required.