DOI QR코드

DOI QR Code

Evaluation of Lung Dose Using Linac Photon Beam in Geant 4 Simulation

Geant4 Simulation에서 Linac 광자선을 이용한 폐 선량평가

  • Jang, Eun-Sung (Department of Radiation Oncology Kosin University Gospel Hospital) ;
  • Lee, Hyo-Yeong (Department of Radiological Science, Dongeui University)
  • 장은성 (고신대학교 복음병원 방사선종양학과) ;
  • 이효영 (동의대학교 방사선학과)
  • Received : 2018.04.11
  • Accepted : 2018.08.31
  • Published : 2018.08.31

Abstract

The Geant 4 simulated the linear accelerator (VARIAN CLINAC) based on the previously implemented BEAMnrC data, using the head structure of the linear accelerator. In the 10 MV photon flux, Geant4 was compared with the measured value of the percentage of the deep dose and the lateral dose of the water phantom. In order to apply the dose calculation to the body part, the actual patient's lung area was scanned at 5 mm intervals. Geant4 dose distributions were obtained by irradiating 10 MV photons at the irradiation field ($5{\times}5cm^2$) and SAD 100 cm of the water phantom. This result is difficult to measure the dose absorbed in the actual lung of the patient so the doses by the treatment planning system were compared. The deep dose curve measured by water phantom and the deep dose curve calculated by Geant4 were well within ${\pm}3%$ of most depths except the build-up area. However, at the 5 cm and 20 cm sites, 2.95% and 2.87% were somewhat higher in the calculation of the dose using Geant4. These two points were confirmed by the geometry file of Genat4, and it was found that the dose was increased because thoracic spine and sternum were located. In cone beam CT, the dose distribution error of the lungs was similar within 3%. Therefore, if the contour map of the dose can be directly expressed in the DICOM file when calculating the dose using Geant4, the clinical application of Geant4 will be used variously.

Geant4 코드는 직선 가속기의 헤드 구조를 사용하여 이전에 구현된 BEAMnrC 데이터를 기반으로 선형가속기 (VARIAN CLINAC.)를 시뮬레이션하였다, 10MV 광자 선속에서 물팬텀의 심부선량백분율과 측면선량의 측정값과 Geant4를 비교 평가하였다. 선량 계산을 인체부위에 적용하기 위해 실제 환자의 Lung 부위를 5mm 간격으로 스캔하였다. Water phantom의 조사야($5{\times}5cm^2$), SAD 100cm에서 10MV 광자를 조사하여 Geant4 선량분포를 구하였다. 이 결과는 실제 환자의 폐(lung)에 흡수되는 선량을 측정하기는 어렵다 그래서 치료계획 시스템에 의한 선량을 비교하였다. 물 팬텀에서 측정된 심부선량 곡선과 Geant4에 의해 계산된 심부선량 곡선은 build-up 영역을 제외한 대부분의 깊이에서 ${\pm}3%$ 이내로 잘 일치하였다. 그러나 5cm와 20cm 지점에서 2.95%와 2.87%로 Geant4를 사용한 선량 계산에서 다소 높은 값을 보이고 있다. 이 두 지점은 Genat4의 geometry 파일을 통해 확인할 수 있었으며, 흉추와 흉골이 위치되어 선량이 증가된 것으로 알 수 있었다. 또한, cone beam CT를 적용한 결과에서 폐(lung)의 선량분포 오차는 3% 이내로 유사한 값을 얻었다. 따라서 Geant4를 이용하여 선량을 계산할 때 DICOM 파일에 직접 선량의 contour map이 표현될 수 있다면 Geant4의 임상적 적용이 다양하게 사용될 것이다.

Keywords

References

  1. F. Verhaegen, "Monte Carlo modeling of external radiotherapy photon beams," Physics in Medicine & Biology, Vol. 48, No. 21, pp. 107-164, 2003. https://doi.org/10.1088/0031-9155/48/21/R01
  2. Nederlandse Commissie Voor Stralings dosimetrie, Monte Carlo Treatment Planning: An introduction NCS Delft the Netherlans, Report 16, 2006.
  3. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, "GEANT4-simulation toolkit," Nuclear Instruments and Method Physics Research A., Vol. 506, No. 3, pp. 250-303, 2003. https://doi.org/10.1016/S0168-9002(03)01368-8
  4. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. A. Asai. "Geant4 developments and applications," IEEE Transactions on Nuclear Science, Vol. 53, No. 1, pp. 270-278, 2006. https://doi.org/10.1109/TNS.2006.869826
  5. F. Foppiano, B. Mascialino, M. G. Pia, M. A. Piergentili, "A Geant4 based simulation of an accelerator's head for intensity mpdulated radiation therapy," Nuclear Science Symposium Conference Record, IEEE, Vol. 4, No. 2, pp. 2128-2132, 2004.
  6. R. Popa, M. Dumitrache, and A. Ciovlica, "A depth dose of VARIAN clinac 2300 C/D, ELEKTA synergy platform, and Siemens primus linacs," Roman. Physics Reports, Vol. 64, No. 4, pp. 997-1010, 2012.
  7. A. Mesbahi, M. Fix, M. Allahverdi, E. Grein, and H. Garaati, "Monte Carlo calculation of varian 2300 C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements," Applied Radiation and Isotopes, Vol. 62, No. 3, pp. 469-477, 2005. https://doi.org/10.1016/j.apradiso.2004.07.008
  8. L. Apipunyasopon, S. Srisatit, and N. Phaisangittisakul, "An investigation of the depth dose in the buildup region, and surface dose for a 6 MV therapeutic photon beam: Monte Carlo simulation and measurements," Journal of Radiation Research, Vol. 54, No. 2, pp. 374-382, 2013. https://doi.org/10.1093/jrr/rrs097
  9. M. Asghar, M. Parinaz, K. Ahmad, and F. Alireza, "Dosimetric properties of a flattening filter-free 6-MV photon beam: a Monte Carlo study," Radiation Medicine, Vol. 25, No 7, pp. 315-324, 2007. https://doi.org/10.1007/s11604-007-0142-6
  10. M. Oprea, C. Constantin, D. Mihailescu, and C. Borcia, "A Monte Carlo investigation of the influence of initial electron beam characteristics on the absorbed dose distributions obtained with a 9 MeV IORT accelerator," U.P. B. Sci. Bull., Ser. A., Vol. 74, No. 4, pp. 153-166, 2012.
  11. O. Chibani, B. Moftah, and C. M. Ma, "On Monte Carlo modeling of megavoltage photon beams: a revisited study on the sensitivity of beam parameters," Medical Physics, Vol. 38, No. 1, pp. 188-201, 2011. https://doi.org/10.1118/1.3523625
  12. E. L. Chaney, T. J. Cullip, and T. A. Gabriel, "A Monte Carlo study of accelerator head scatter," Medical Physics, Vol. 21, No. 1, pp. 1383-1390, 1994. https://doi.org/10.1118/1.597194
  13. M. K. Fix, H. Keller, P. Ruegsegger, and E. J. Born, "Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy," Medical Physics. Vol. 27, No. 12, pp. 2739-2747, 2000. https://doi.org/10.1118/1.1318220
  14. M. K. Fix, P. J. Keall, K. Dawson, and J. V. Siebers, "Monte Carlo source model for photon beam radiotherapy: photon source characteristics," Medical Physics. Vol. 31, No. 11, pp. 3106-3121, 2004. https://doi.org/10.1118/1.1803431
  15. R. D. Lewis, S. J. Ryde, D. A. Hancock, and C. J. Evans, "An MCNP-based model of a linear accelerator X-ray beam," Physics in Medicine & Biology. Vol. 44, No. 5, pp. 1219-1230, 1999. https://doi.org/10.1088/0031-9155/44/5/010
  16. A. Mesbahi, P. Mehnati, and A. Keshtkar, "A comparative Monte Carlo study on 6 MV photon beam characteristics of VARIAN 21EX and ELEKTA SL-25 linacs," Iron. Journal of Radiation Research, Vol. 5, No. 1, pp. 23-30, 2007.
  17. A. Mesbahi, M. Fix, M. Allahverdi, E. Grein, and H. Garaati, "Monte Carlo calculation of varian 2300 C/D linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements," Applied Radiation and Isotopes. Vol. 62, No. 3, pp. 469-477, 2005. https://doi.org/10.1016/j.apradiso.2004.07.008
  18. S. Y. JANG VASSILIEV, O. N. LIU, H. H.; MOHAN, R. "Development and commissioning of a multileaf collimator model in Monte Carlo dose calculations for intensity-modulated radiation therapy," Medicai Physics, Vol. 33, No. 3, pp. 770-781, 2006. https://doi.org/10.1118/1.2170598
  19. A. C. H. OLIVEIRA, J. W. VIEIRA, M. G. SANTANA, F. R. A. LIMA, "Monte Carlo Simulation of a Medicai Linear Accelerator for Generation of Phase Spaces, In: Intemational Nuclear Atlantic Conference - INAC, Recife. 2013 International Nuclear Atlantic Conference - INAC 2013, 2013.
  20. N. TYAGI, J. MORAN, M. LITZENBERG, D. w. BIELAJEW, A. F., FRAASS, B. A., CHETTY, I. J., "Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculation," MedicaI Physics, Vol. 34, No. 2, pp. 651-663, 2007. https://doi.org/10.1118/1.2428405