• Title/Summary/Keyword: pepper (Capsicum annuum)

Search Result 488, Processing Time 0.032 seconds

Transcriptome analysis, microsatellite marker information, and orthologous analysis of Capsicum annuum varieties

  • Ahn, Yul-Kyun;Karna, Sandeep;Kim, Jeong-Ho;Lee, Hye-Eun;Kim, Jin-Hee;Kim, Do-Sun
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.311-316
    • /
    • 2016
  • The efficacy of plant breeding has been enhanced by application of molecular markers in population screening and selection. Pepper (Capsicum annuum L.) is a major staple crop that is economically important with worldwide distribution. It is valued for its spicy taste and medicinal effect. The aim of this study was to discover single nucleotide polymorphisms (SNPs), microsatellite markers information, and percentage sharing through orthologous analysis of pepper-specific pungency-related genes. Here, we report the results of transcriptome analysis and microsatellite markers for four pepper varieties that possess a pungency-related gene. Orthologous analyses was performed to identify species-specific pungency-related genes in pepper, Arabidopsis thaliana L., potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). Advancements in next-generation sequencing technologies enabled us to quickly and cost-effectively assemble and characterize genes to select molecular markers in various organisms, including pepper. We identified a total of 9762, 7302, 8596, and 6886 SNPs for the four pepper cultivars Blackcluster, Mandarine, Saengryeg 211, and Saengryeg 213, respectively. We used 454 GS-FLX pyrosequencing to identify microsatellite markers and tri-nucleotide repeats (54.4%), the most common repeats, followed by di-, hexa-, tetra-, and penta-nucleotide repeats. A total of 5156 (15.9%) pepper-specific pungency-related genes were discovered as a result of orthologous analysis.

Changes in Quality Characteristics of Kimchi Added with the Fresh Red Pepper (Capsicum Annuum L.) (홍고추를 첨가한 김치의 숙성 중 품질특성 변화)

  • Hwang, In-Guk;Kim, Ha-Yun;Hwang, Young;Jeong, Heon-Sang;Lee, Jun-Soo;Kim, Hae-Young;Yoo, Seon-Mi
    • Korean journal of food and cookery science
    • /
    • v.28 no.2
    • /
    • pp.167-174
    • /
    • 2012
  • In this study, the changes in the quality characteristics of $Kimchi$ added with fresh red pepper ($Capsicum$ $annuum$ L.) was investigated during 5 months of fermentation at $2^{\circ}C$. The moisture content of $Kimchi$ increased with an increase in the amount of added fresh red pepper, whereas the crude protein, crude lipid, and crude ash content decreased. The initial pH and total acidity of $Kimchi$ containing the fresh red pepper showed ranged from 4.96-5.36 and 0.27-0.33%, respectively. The pH and total acidity rapidly changed within a range of 4.27-4.37 and 0.53-0.55%, respectively, up to 2 months. The fructose and glucose content slowly changed up to 2 months and 3 months, respectively, and then gradually decreased afterwards. The total bacterial and lactic acid bacterial counts of $Kimchi$ containing the fresh red pepper gradually increased up to 2 months and 3 months, respectively, and then decreased thereafter. In addition, there was no difference between the $Kimchi$ containing the fresh red pepper and the control in the sensory evaluation.

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Developmental Changes of Recessive Genes-mediated Cucumber mosaic virus (CMV) Resistance in Peppers (Capsicum annuum L.)

  • Min, Woong-Ki;Ryu, Jae-Hwang;Ahn, Su-Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.235-240
    • /
    • 2014
  • Cucumber mosaic virus (CMV) is one of the most important viral diseases in pepper (Capsicum annuum L.), and several genes for resistance were reported in Capsicum spp. In Korea, a single dominant gene that is resistant to $CMV_{Fny}$ and $CMV_{P0}$ has been used for breeding. Recently, a new strain ($CMV_{P1}$) was reported that could infect cultivars resistant to both $CMV_{Fny}$ and $CMV_{P0}$. Therefore, breeding of more robust CMV-resistant cultivars is required. In this study, we surveyed the inheritance of $CMV_{P1}$ resistance and analyzed the location of the resistance loci. After $CMV_{P1}$ inoculation of various germplasms and breeding lines, one accession (ICPN18-8) showed no visual symptoms at 15 dpi (days post inoculation) but was susceptible after 45 dpi, and one resistant line (I7339) showed resistance until at 45 dpi. The latter line was used for tests of resistance inheritance. A total of 189 $F_2$ plants were examined, with 42 individuals showing resistance at 15 dpi and a phenotype segregation ratio close to 1:3 (resistant:susceptible plants). In a lateral ELISA test at 45 dpi, 11 plants showed resistance, and the segregation ratio was changed to 1:15. These results indicate that resistance in C. annuum 'I7339' is controlled by two different recessive genes; we named these resistance genes 'cmr3E' and 'cmr3L,' respectively. To locate these two resistant loci in the pepper linkage map, various RAPD, SSR, and STS markers were screened; only nine markers were grouped into one linkage group (LG). Only one RAPD primer (OPAT16) was distantly linked with cmr3E (22.3 cM) and cmr3L (20.7 cM). To develop more accurate markers for marker-assisted breeding, enriching for molecular markers spanning two loci will be required.

Influence of Genotype and Ecotype on Anther Culture Efficiency in Hot Pepper (Capsicum annuum L.) (고추의 유전자형 및 생태형이 약배양 효율에 미치는 영향)

  • 김용권;권오열;윤화모
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.49-52
    • /
    • 1999
  • The influence of genotype and ecotype on the anther culture efficiency using hybrid of hot pepper (Capsicum annuum L.) was investigated. Anther culture efficiency was differently dependent on the genotype of parents. In the efficiency of embryo production, the cross combination using female parents with high embryo inducing ability was higher than those with low embryo inducing ability. It was shown that genotype and cytoplasm has effect on embryo production. Also the embryogenic ability was different according to ecotype of cross lines. The frequency of embryo production were the highest in Local variety $\times$ pimento cross combinations with 17.8~46.1 and the lowest in Pimento $\times$ Local variety cross combinations with 5.4~8.5%. Embryo inducing frequency was the middle value with 10.25~23.1% in Local variety $\times$ Tropical variety, Tropical variety $\times$ Local variety, Tropical variety $\times$ Pimento, and Pimento $\times$ Tropical variety cross combinations.

  • PDF

Evaluation of Phosphorus Acid Treatment as a Growth Stimulant for Red pepper (Capsicum annuum L.), Cucumber (Cucumis sativus L.), and Kimchi cabbage (Brassica campestris L. ssp. pekinensis) in the Bed Soil Environment (상토 환경에서 고추(Capsicum annuum L.), 오이(Cucumis sativus L.) 및 배추(Brassica campestris L. ssp. pekinensis)에 대한 생장촉진제로서 아인산 처리의 평가)

  • Kwon, Sang-Moon;Lee, Ye-Eun;Park, Young-Min;Kim, Deok-Won;Park, Ji-Su;Oh, Eun-Ji;Yoo, Jin;Chung, Keun-Yook
    • Journal of Environmental Science International
    • /
    • v.29 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • This study was conducted to evaluate the effect of phosphorus acid (H3PO3) addition to the horticultural bed soil on the initial growth of red pepper (Capsicum annuum L. cv.), cucumber (Cucumis sativus L. cv.), and kimchi cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr. cv.). The stem heights of red pepper and cucumber were 46.1% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the untreated (control). Further, the stem diameter of pepper and cucumber were 48.7% and 23.0% greater in the 50 mg/L of phosphorus acid treatment than the control. In addition, the number of kimchi cabbage leaves was 47.5% greater in the 50 mg/L of phosphorus acid treatment than the control. The dry weights of red pepper, cucumber and kimchi cabbage were 72.9%, 16.5%, and 30.4% heavier in the 50 mg/L than the control, respectively. Cations (K, Ca, and Mg) and total phosphorus (T - P) were quantitatively analyzed for these three horticultural crops. The concentrations of K, Ca, and Mg, and T - P were higher in the 50 mg/L of phosphorus acid than the control, respectively. Based on the results obtained in this study, it appears that treatment of phosphorus acid in horticultural bed soil enhanced the growth of red pepper, cucumber and Kimchi cabbage.

Rooting and Seedling Growth of Hot Pepper (Capsicum annuum L.) Cuttings as Affected by Rootone Treatment and Pinching (적심 여부와 발근촉진제 처리가 고추묘의 발근 및 생장에 미치는 영향)

  • Lee, Hee-Ju;Lee, Sang-Gyu;Lee, Jung-Myung
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.393-400
    • /
    • 2009
  • In order to find out the feasibility of producing grafted red pepper (Capsicum annuum L.) seedlings with root-removed rootstocks, rooting response and subsequent seedling growth was also evaluated. Pinching the top of pepper seedlings for cutting significantly reduced the rooting of cuttings in 10 commercial hot pepper cultivars. Normal rooting was obtained from all commercial cultivars even though the rooting response varied considerably among cultivars. Poor rooting was observed in 'Gukbo' and 'Chungyang'. Rootone treatment significantly promoted rooting in all tested cultivars and the decrease of rooting response caused by pinching could be fully recovered by rootone treatment. Among the ten commercial rootstocks developed for hot pepper grafting, 'Tantan' showed the best rooting response followed by 'Konesian Hot' and 'Wonkwang 1'. Most of these rootstocks, however, showed higher rooting response as compared to the popular commercial cultivars, 'Manit', 'Chungyang', and 'Nokkwang'. Pasting of IBA at cut surface promoted the rooting of pepper cuttings, but the effect was not quite pronounced as compared to rootone treatment.

Foliar Colonization and Growth Promotion of Red Pepper (Capsicum annuum L.) by Methylobacterium oryzae CBMB20

  • Lee, Min-Kyoung;Chauhan, Puneet Singh;Yim, Woo-Jong;Lee, Gyeong-Ja;Kim, Young-Sang;Park, Kee-Woong;Sa, Tong-Min
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • In order to exploit Methylobacterium oryzae CBMB20 as of plant growth promoting agent, different inoculation methods have been evaluated. The present study aimed to evaluate soil, foliar, and soil+foliar inoculations of M. oryzae CBMB20 to improve the growth, fruit yield, and nutrient uptake of red pepper (Capsicum annuum L.) under greenhouse conditions. The population range of green fluorescent protein (gfp)-tagged M. oryzae CBMB20 using the three inoculation methods was 2.5-2.9 ${\log}_{10}$ cfu/g in the rhizosphere and 4.5-6.0 ${\log}_{10}$ cfu/g in the phyllosphere of red pepper plants. Confocal laser scanning microscopy results confirmed the colonization of M. oryzae CBMB20 endophytically on leaf surface. Plant height, fruit dry weight, and total biomass were significantly higher ($p{\leq}0.05$) in all M. oryzae CBMB20 inoculation methods as compared to non-inoculated control. Furthermore, uptake of mineral nutrients such as N, P, K, Ca, and Mg in red pepper plants in all M. oryzae CBMB20 inoculation methods was higher than in non-inoculated control. Comparative results of inoculation methods clearly demonstrated that soil+foliar inoculation of M. oryzae CBMB20 lead to the highest biomass accumulation and nutrient uptake which may be due to its efficient colonization in the red pepper rhizosphere and phyllosphere.

ABA Increases Susceptibility of Pepper Fruits to Infection of Anthracnose by Collectotrichum acutatum

  • Hwang, Soo-Kyeong;Kim, Joo-Hyung;Kim, Young-Ho;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.400-406
    • /
    • 2008
  • To examine the relationship between plant hormones and the development of pepper anthracnose, we investigated the effects of several plant hormones on the progression of disease symptoms. Of the five plant hormones examined, abscisic acid (ABA) increased the lesion length and disease incidence on detached fruits of Capsicum annuum cv. Nokkwang. The simultaneous application of ABA with inoculation of Colletotrichum acutatum JC24 resulted in increased lesion length, depending the concentration of ABA applied. Additionally, application of ABA caused the development of pepper anthracnose in fruits of Capsicum baccatum cvs. PBC80 and PBC81, which were previously resistant to the disease. Furthermore, ABA administration rendered increased pathogenicity of other isolates of C. acutatum BAC02063, PECH10, and TCBNU3 obtained from the Chinese matrimony vine, peach, and tea tree, respectively. Our data suggest that exogenous ABA may result in the suppression of defense mechanisms of pepper fruits against anthracnose, which leads to a change in the susceptibility of pepper fruits and the development of pepper anthracnose.

Serological Investigation of Virus Diseases of Pepper Plant (Capsicum annum L.) in Korea (혈청학적 방법에 의한 고추의 바이러스병 감염상 조사)

  • 라용준
    • Journal of Plant Biology
    • /
    • v.15 no.1
    • /
    • pp.23-27
    • /
    • 1972
  • A total of 163 virus infected pepper plants(Capsicum annuum L.) collected from various pepper growing regions in Korea were investigated on the presence of tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), potato virus X(PVX), potato virus Y(PVY) and alfalfa mosaic virus (AMV) by serological methods. Van Slogteren's microprecipitin test was applied for the testing of TMV, PVX and PVY from infected plants, and Ouchterlony agar double diffusion test was used for CMV and AMV. Results obtained are as follows: 1. TMV, CMV, PVX, PVY and AMV were found to occur on the pepper plants growing in Korea. 2. The prevalence of each of these viruses among the 163 pepper plants investigated was in the order of CMV: 93 plants(57.0%)>TMV: 91 plants (55.8%)>AMV: 58 plants (35.6%)>PVY: 40 plants (24.5%)> PVX:6 plants(3.7%). 3. Among the 163 plants investigated, 72 plants (44%) showed infection with one kind of virus and 91 plants (56%) showed mixed infection with more than two different viruses. In general, heavier damage of the plants was observed from mixed infection. 4. The results of serological identification of pepper viruses coincided with those results obtained by sap inoculation experiment conducted at the Horticultural Experiment Station along with present investigation. Thus the serological techniques applied in this experiment proved to be very reliable for the identification of TMV, CMV, PVX, PVY and AMV from pepper plants infected with these viruses.

  • PDF