• Title/Summary/Keyword: penetration resistance test

Search Result 408, Processing Time 0.028 seconds

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

Comparative study of Dutchcone and piezocone test on soft ground (연약지반에 대한 기계식 및 전자식 콘관입시험 비교 연구)

  • 장병욱;김재현;김동범;윤상묵;원정윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.237-244
    • /
    • 2002
  • A comparative study of 134 mechanical (Dutch cone) and 9. electronic cone (Piezocone) penetration data from the southern part of Korea has been performed. In general, Dutch cone results may be different from piezocone results due to the difference in structure of the cones. Cone penetrometer test data were analyzed and plotted in soil classification chart proposed by Robertson et. al.(1986,1990) Cone factors of Dutch cone and piezocone test have empirically been determined using laboratory and field vane test results. Using this cone factors, it was shown that there was good correlation between shear strength estimated using cone resistance and that of laboratory test and field vane tests. It was found that there was a good correlation between cone resistance from Dutch cone and that from piezocone. Dutch cone test provides a useful means for stratigraphic profiling in large project and has some advantage over piezocone in particular situations, such as very soft clay ground and dredged area.

  • PDF

Effect of Oxide Particles Addition to Powder Coating on Corrosion Resistance of Steel Used as Marine Equipments (조선·해양 기자재용 강재의 내식성에 미치는 분체도장 중 산화물 첨가의 영향)

  • Park, Jin-seong;Ryu, Seung Min;Jeong, Yeong Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.100-107
    • /
    • 2020
  • The demand for powder-coated steel used in the marine industry is increasing owing to their superior corrosion resistance. However, the powder coatings used in commercial products can deteriorate easily by the penetration of brine. In an attempt to suppress brine penetration into the powder coating and significantly increase the corrosion resistance, three types of oxide particles were added to the coating. Electrochemical impedance spectroscopy tests in 3.5% NaCl solution were performed to evaluate the corrosion behaviors of the powder coating with oxide particles. The results showed that the addition of SiO2 particles to a powder coating severely decreased the corrosion resistance due to the easy detachment of agglomerated SiO2 particles with a coarse size from the coating layer. In contrast, the TiO2 and SnO2-added coatings showed better corrosion resistance, and the TiO2-added coating performed best in the test conducted at room temperature. However, conflicting results were obtained from tests conducted at a higher temperature, which may be attributed to the effective suppression of brine penetration by the fine SnO2 particles uniformly distributed in the coating.

An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake (해진시 개단무리말뚝의 거동에 관한 모형실험 연구)

  • 남문석;최용규;김재현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

Premature Stiffening of Cement Paste Associated with AFm Formation

  • Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.83-90
    • /
    • 2011
  • The purpose of this research is to investigate the effect of AFm formation on the stiffening process of cement paste. High and low alkali sulfate clinkers were used for the experiments. The flow and stiffening behavior of cement paste was investigated using modified ASTM C403 penetration resistance test and oscillatory shear rheology. X-ray powder diffraction (XRD) was used for phase identification associated with stiffening of the paste. It was found from the results that low alkali clinker mixture produced very strong premature stiffening whereas high alkali clinker mixture did not cause premature stiffening. This is because of the large amount of alkali sulfate present in the clinker. Addition of calcium and sodium chloride to the high alkali clinker mixture caused faster stiffening and set.

A Studyon the Properties of Polymer-Modified Mortar Using Asphalt Emulsion (아스팔트 에멀젼을 혼입한 폴리머 시멘트 모르터의 특성에 관한 연구)

  • Jean, Woo-Sung;Song, Hun;Jo, Young-Kug;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.375-380
    • /
    • 1997
  • The purpose of this study is to examine the properties of polymer-modified mortars using asphalt emulsion. The polymer-modified mortars using asphalt emulsion with various asphalt-cement ratios are prepared, and tested for flexural and compressive strengths, water absorption and permeability, carbonation, Cl ion penetration and chemical resistance. From the test results, the flexural and compressive strengths, water absorption and permeability, carbonation and Cl ion penetration depths of polymer-modified mortars using asphalt emulsion tend to be decreased with increasing asphalt-cement ratio, and chemical resistance is improved. It is evident that polymer-modified mortars using asphalt emulsion having an excellent properties as a waterproof and finish materials can be produced.

  • PDF

Setting Time Prediction of Super Retarding Concrete Using Improved Durometer (개량형 듀로미터를 이용한 초지연 콘크리트의 응결시간 분석)

  • Han, Soo-Hwan;Choi, Yoon-Ho;Yeun, Kyu-Won;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.73-74
    • /
    • 2020
  • In this study, the feasibility of the durometer into super retarding concrete was studied by comparing the penetration resistance with the hardness of each durometer using the penetration resistance and the improved Durometer and Durometer A-Type according to the ultra-delay mixture rate. The test results showed that initial setting time by improved Durometer and Durometer A-Type were fixed at 25, 50 HD, respectively, and the 35, 80 HD showed at final setting time. It was also found that the use of the durometer can be available to measure the setting time of the concrete.

  • PDF

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.