• Title/Summary/Keyword: penetration problems

Search Result 215, Processing Time 0.027 seconds

Numerical simulations of deep penetration problems using the material point method

  • Lorenzo, R.;da Cunha, Renato P.;Cordao Neto, Manoel P.;Nairn, John A.
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • Penetration problems in geomechanics are common. Usually the soil is heavily disturbed around the penetrating bodies and large deformations and distortions can occur. The simulation of the installation of displacement piles is a good example of the interest of these types of problems for geomechanics. In this paper the Material Point Method is used to overcome the difficulties associated with the simulations of problems involving large deformation and full displacement type penetration. Recent modifications of the Material Point Method known as Generalized Interpolation Material Point and the Convected Particle Domain Interpolation are also used and evaluated in some of the examples. Herein a footing submitted to large settlements is presented and simulated, together with the processes associated to a driven pile under undrained conditions. The displacements of the soil surrounding the pile are compared with those obtained by the Small Strain Path Method. In addition, the Modified Cam Clay model is implemented in a code of MPM and used to simulate the process of driving a pile in dry sand. Good and rather encouraging agreement is found between compared data.

Fluorine Penetration Characteristics on Various FSG Capping Layers (FSG Capping 레이어들에서의 플루오르 침투 특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Eom, Joon-Chul;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.26-29
    • /
    • 2004
  • High density plasma fluorinated silicate glass (HDP FSG) is used as a gap fill film for metal-to-metal space because of many advantages. However, FSG films can cause critical problems such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. It is known that these problems are caused by fluorine penetration out of FSG film. To prevent it, FSG capping layers such like SRO (Silicon Rich Oxide) are needed. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated. Normal stress and High stress due to denser film. While heat treatment to PETEOS caused lower blocking against fluorine penetration, it had insignificant effect on SiN. Compared with other layers, SRO using ARC chamber and SiN were shown a better performance to block fluorine penetration.

  • PDF

The Eeffect of Arc Length and Shield Gas on Penetration Aspect Ratio in A-TIG Welding (A-TIG 용접에서 용입 형상비에 미치는 아크길이와 실드가스의 영향)

  • Park, In-Ki;Ham, Hyo-Sik;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.42-47
    • /
    • 2008
  • TIG welding enables to produce high quality weldment. However it has some problems such as shallow penetration and large distortion due to low penetration aspect ratio after welding. In order to overcome those problems, there are many ongoing studies on A-TIG welding, which use active flux. In this study, the effect of arc length and shield gas on penetration aspect ratio with melt-run welding on STS 304 6t, on which active flux was spreaded, was investigated. Arc length was changed from 1mm to 3mm, and aspect ratio became higher as arc length was decreased in this range. 100% Ar gas, Ar-$H_2$ mixed gas, Ar-He mixed gas, and 100% He gas were used as shield gas in this study. When Ar-$H_2$ mixed gas, Ar-He mixed gas, and 100% He gas were applied, penetration and melting efficiency were both increased as compared with 100% Ar gas. Aspect ratio was the highest with Ar-2.5% $H_2$ mixed gas.

Analysis of EM Penetration Problems in Complex Structures Using Finite-Difference Time-Domain Method (FDTD 방법을 이용한 복잡한 구조물에서의 전자파 침투 특성 해석)

  • 김병남;채찬병;박성욱;이형수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.68-75
    • /
    • 2000
  • In this paper, we analyzed the radiation patterns of a monopole antenna mounted on cylinder and EM penetration problems in the complex structures by using FDTD method associated with 3-D PML absorbing boundary condition. In order to validate the proposed FDTD code, the radiation patterns of monopole antenna mounted on cylinders were compared with the exact Carter's solutions. As a results, the predicted radiation pattern exhibited excellent agreement with exact solution. And the FDTD code is applied to analyze the EM penetration problems in complex structures, Blackhawk helicopter. As the plane wave is excited, a significant amount of energy penetrates the helicopter structure, and it is dependent on aperture/airframe interface.

  • PDF

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.

Prediction of Maximum Liquid-phase Penetration in Diesel Spray: A review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.117-125
    • /
    • 2008
  • The correlations for the prediction of maximum liquid-phase penetration in diesel spray are reviewed in this study. The existing models developed for the prediction of maximum liquid-phase penetration can be categorized as the zero-dimensional (empirical) model, the multi-dimensional model and the other model. The existing zero-dimensional model can be classified into four groups and the existing multidimensional models can be classified into three groups. The other model includes holistic hydraulic and spray model. The maximum liquid-phase penetration is mainly affected by nozzle diameter, fuel volatility, injection pressure, ambient gas pressure, ambient gas density and fuel temperature. In the case of empirical correlations incorporated with spray angle, the predicted results will be different according to the selection of correlation for spray angle. The research for the effect of boiling point temperatures on maximum liquid-phase penetration is required. In the case of multidimensional model, there exist problems of the grid and spray sub-models dependency effects.

  • PDF

Analytical study of the influence of crack width and depth on the penetration of chloride ion and the carbonation (균열 폭 및 깊이가 염소이온 침투 및 탄산화에 미치는 영향에 대한 해석적 연구)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.594-597
    • /
    • 2006
  • Chloride ion penetration and carbonation are the most important factors in the durability problems of reinforced concrete structures. Most of the existing studies on those subjects are focused on the no-crack concrete, though the existence of crack may strongly affect the chloride ion penetration and carbonation. To evaluate the influence of crack on the chloride ion penetration and carbonation and to assess the service life of reinforced concrete more accurately, finite volume analyses (FVA) were performed based on the FV mesh containing the ideal crack whose width is uniform along the depth. Analytical results show that the influence of crack width and depth is much more pronounced for the chloride ion penetration than for the carbonation.

  • PDF

Study on Fluorine Penetration of Capping Layers using FTIR analysis (FTIR을 이용한 캐핑레이어의 플루오르 침투 특성 연구)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.300-303
    • /
    • 2004
  • To fill the gap of films for metal-to-metal space High density plasma fluorinated silicate glass (HDP FSG) is used due to various advantages. However, FSG films can have critical drawbacks such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. These problems are generally caused by fluorine penetration out of FSG film. Hence, FSG capping layers such like SRO(Silicon Rich Oxide) are required to prevent flourine penetration. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated through FTIR analysis. FTIR graphs of both SRO using ARC chamber and SiN show that clear Si-H bonds at $2175{\sim}2300cm^{-1}$. Thus, Si-H bond at $2175{\sim}2300cm^{-1}$ of FSG capping layers lays a key role to block fluorine penetration as well as dangling bond.

  • PDF

Improvement of Variable Renewable Energy Penetration of Stand-Alone Microgrid Hosting Capacity by Using Energy-Storage-System Based on Power Sensitivity

  • CHOI, DongHee
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.91-101
    • /
    • 2020
  • Recently, the demand for high penetration of variable renewable energy (VRE) penetration in a power system is increased. In consequence, distribution systems including microgrids confront the increased installation of VRE-based distributed generation. Despite of the high demand of VRE-based distributed generation in a distribution system, the installation of photovoltaic (PV) system in a distribution system has been restricted by various problems. In other words, the hosting capacity for high VRE penetration in a distribution system is limited. This paper analyzes the improvements of hosting capacity VRE penetration of stand-alone microgrid (SAMG) with energy storage system (ESS) by considering virtual-slack (VS) control based on power sensitivity. With the pre-defined power sensitivity, the ESS operates as virtual slack in the SAMG by controlling its bus voltage and phase angle indirectly. Therefore, the ESS enables the increase of VRE penetration in the SAMG. The proposed VS control is realized by analyzing the ESS as a virtual slack in power flow analysis based on power sensitivity. Then its validity is demonstrated with the case study on the SAMG in South Korea with practical data.

A simplified procedure to incorporate soil non-linearity in missile penetration problems

  • Siddiqui, N.A.;Kumar, S.;Khan, M.A.;Abbas, H.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.3
    • /
    • pp.249-262
    • /
    • 2006
  • In this paper, a simplified mathematical procedure is presented to incorporate nonlinearity in soil material to predict the deceleration time history, penetration depth and other relevant parameters for normal impact of missiles into soil targets. Numerical method is employed for these predictions. The results of the study are compared with experimental observations and predictions available in the literature. A good agreement is found with experimental observations and an improvement is observed with existing predictions. A comparison is also made with linear soil model. Some parametric studies are also carried out to obtain the results of practical interest.