• Title/Summary/Keyword: penalty techniques

Search Result 50, Processing Time 0.025 seconds

A brief review of penalty methods in genetic algorithms for optimization

  • Gen, Mitsuo;Cheng, Runwei
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.30-35
    • /
    • 1996
  • Penalty technique perhaps is the most common technique used in the genetic algorithms for constrained optimization problems. In recent years, several techniques have been proposed in the area of evolutionary computation. However, there is no general guideline on designing penalty function and constructing an efficient penalty function is quite problem-dependent. The purpose of the paper is to give a tutorial survey of recent works on penalty techniques used in genetic algorithms and to give a better classification on exisitng works, which may be helpful for revealing the intrinsic relationship among them and for providing some hints for further studies on penalty techniques.

  • PDF

Generator Penalty Factor Calculation including Slack Bus by Reference Angle Re-Specification (위상각 기준모선의 이동에 의한 Slack 모선을 포함한 모든 발전기의 Penalty 계수 계산방법)

  • Lee, Sang-Joong;Kim, Kern-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.49-51
    • /
    • 2000
  • ln this paper, a method by which penalty factors of all generators including slack bus can be directly derived is presented. With a simple re-assignment of angle reference bus to a bus where no generation exists, penalty factors for slack bus is obtained without any physical assumption. While previous Jacobian-based techniques for generator penalty factor calculation have been derived with basis upon reference bus, proposed method are not dependent on reference bus and calculated penalty factors can be substituted directly into the general ELD equation to compute the economic dispatch. Equations for system loss sensitivity, penalty factors and optimal generation allocation are solved simultaneously in normal power flow computation.

  • PDF

Topology Optimization Using Homogenized Material and Penalty Factor (균질재료와 벌칙인자를 이용한 위상 최적설계)

  • 임오강;이진식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.3-10
    • /
    • 1998
  • Optimization problems may be devided into geometry optimization problems and topology optimization problems. In this paper, a method using tile equivalent material properties prediction techniques of a particulate-reinforced composites is proposed for the topology optimization. This method makes use of penalty factor in order that regions with intermediate value of design variables can be penalized. The computational results being obtained from PLBA algorithm of some values of penalty factor are presented.

  • PDF

Proposing Effective Regularization Terms for Improvement of WGAN (WGAN의 성능개선을 위한 효과적인 정칙항 제안)

  • Hahn, Hee Il
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A Wasserstein GAN(WGAN), optimum in terms of minimizing Wasserstein distance, still suffers from inconsistent convergence or unexpected output due to inherent learning instability. It is widely known some kinds of restriction on the discriminative function should be considered to solve such problems, which implies the importance of Lipschitz continuity. Unfortunately, there are few known methods to satisfactorily maintain the Lipschitz continuity of the discriminative function. In this paper we propose techniques to stably maintain the Lipschitz continuity of the discriminative function by adding effective regularization terms to the objective function, which limit the magnitude of the gradient vectors of the discriminator to one or less. Extensive experiments are conducted to evaluate the performance of the proposed techniques, which shows the single-sided penalty improves convergence compared with the gradient penalty at the early learning process, while the proposed additional penalty increases inception scores by 0.18 after 100,000 number of learning.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

Semi-supervised learning using similarity and dissimilarity

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.99-105
    • /
    • 2011
  • We propose a semi-supervised learning algorithm based on a form of regularization that incorporates similarity and dissimilarity penalty terms. Our approach uses a graph-based encoding of similarity and dissimilarity. We also present a model-selection method which employs cross-validation techniques to choose hyperparameters which affect the performance of the proposed method. Simulations using two types of dat sets demonstrate that the proposed method is promising.

FUZZY TRANSPORTATION PROBLEM IS SOLVED UTILIZING SIMPLE ARITHMETIC OPERATIONS, ADVANCED CONCEPT, AND RANKING TECHNIQUES

  • V. SANGEETHA;K. THIRUSANGU;P. ELUMALAI
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.311-320
    • /
    • 2023
  • In this article, a new penalty and different ranking algorithms are used to find the lowest transportation costs for the fuzzy transportation problem. This approach utilises different ranking techniques when dealing with triangular fuzzy numbers. Also, we find that the fuzzy transportation solution of the proposed method is the same as the Fuzzy Modified Distribution Method (FMODI) solution. Finally, examples are used to show how a problem is solved.

Characterization of the Smoothest Density with Given Moments

  • Hong, Changkon
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.367-385
    • /
    • 2001
  • In this paper, we characterize the smoothest density with prescribed moments. Hong and Kim(1995) proved the existence and uniqueness of such as density. we introduce the general optimal control problem and prove some theorems on the characterization of the minimizer using the optimal control problem techniques.

  • PDF

Resolution of kinematic redundancy using contrained optimization techniques under kinematic inequality contraints

  • Park, Ki-Cheol;Chang, Pyung-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.69-72
    • /
    • 1996
  • This paper considers a global resolution of kinematic redundancy under inequality constraints as a constrained optimal control. In this formulation, joint limits and obstacles are regarded as state variable inequality constraints, and joint velocity limits as control variable inequality constraints. Necessary and sufficient conditions are derived by using Pontryagin's minimum principle and penalty function method. These conditions leads to a two-point boundary-value problem (TPBVP) with natural, periodic and inequality boundary conditions. In order to solve the TPBVP and to find a global minimum, a numerical algorithm, named two-stage algorithm, is presented. Given initial joint pose, the first stage finds the optimal joint trajectory and its corresponding minimum performance cost. The second stage searches for the optimal initial joint pose with globally minimum cost in the self-motion manifold. The effectiveness of the proposed algorithm is demonstrated through a simulation with a 3-dof planar redundant manipulator.

  • PDF

An Optimal Distribution Model under Consideration of Delivery Unit and Backlogging Costs (수송단위에 의한 지연납기를 고려한 최적 수송량 결정 모형)

  • Lee, Yang Ho;An, Joon-Hong;Choi, Gyunghyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.3
    • /
    • pp.206-212
    • /
    • 2003
  • In this paper, we propose a mathematical optimization model with a suitable algorithm to determine delivery and backlogging quantities by minimizing the total cost including the penalty costs for delay. The system has fixed transshipment costs and demands are fulfilled by some delivery units that represent the volume of delivery amount to be shipped in a single time period. Since, backlogging is allowed, demands could be delivered later at the expense of some penalty costs. The model provides the optimal decisions on when and how much to he delivered while minimizing the total costs. To solve the problem, we propose an algorithm that uses the Lagrangian dual in conjunction with some primal heuristic techniques that exploit the special structure of the problem. Finally, we present some computational test results along with comments on the further study.