• Title/Summary/Keyword: penalty function method

Search Result 180, Processing Time 0.024 seconds

Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers (스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성)

  • Jung, J.E.;Lee, S.-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.

Discrete Optimum Design of Semi-rigid Steel Frames Using Refined Plastic Hinge Analysis and Genetic Algorithm (개선소성힌지해석과 유전자 알고리즘을 이용한 반강접 강골조의 이산최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Kang, Moon Myoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.201-213
    • /
    • 2004
  • A GA-based optimum design algorithm and a program for plane steel frame structures with semi-rigid connections are presented. The algorithm is incorporated with the refined plastic hinge analysis method wherein geometric nonlinearity is considered by using the stability functions of beam-column members, and material nonlinearity, by using the gradual stiffness degradation model that includes the effects of residual stresses, moment redistribution through the occurrence of plastic hinges, semi-rigid connections, and geometric imperfection of members. In the genetic algorithm, the tournament selection method and micro-GAs are employed. The fitness function for the genetic algorithm is expressed as an unconstrained function composed of objective and penalty functions. The objective and penalty functions are expressed as the weight of steel frames and the constraint functions, respectively. In particular, the constraint functions fulfill the requirements of load-carrying capacity, serviceability, ductility, and construction workability. To verify the appropriateness of the present method, the optimal design results of two plane steel frames with rigid and semi-rigid connections are compared.

An Efficient Method for Nonlinear Optimization Problems using Genetic Algorithms (유전해법을 이용한 비선형최적화 문제의 효율적인 해법)

  • 임승환;이동춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.93-101
    • /
    • 1997
  • This paper describes the application of Genetic Algorithms(GAs) to nonlinear constrained mixed optimization problems. Genetic Algorithms are combinatorial in nature, and therefore are computationally suitable for treating discrete and integer design variables. But, several problems that conventional GAs are ill defined are application of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an improved GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.

  • PDF

$H_ {\infty}$ PID Controller Design for an Attraction Type Magnetic Levitation System (흡인식 자기부상시스템의 $H_ {\infty}$ PID 제어기 설계)

  • Kim, Seog-Joo;Kim, Chun-Kyung;Kwon, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1624-1627
    • /
    • 2008
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a PID controller for an attraction type magnetic levitation system. First, we convert the $H_ {\infty}$ PID controller problem into a static output feedback problem. We then solve the static output problem by using the recently developed penalty function method. Numerical experiments show the effectiveness of the proposed algorithm.

Development of OPF Algorithm with Changing Inequality to Equality (부등호의 등호화를 통한 OPF 해석 알고리즘 개발)

  • Ju, Un-Pyo;Kim, Geon-Jung;Choe, Jang-Heum;Eom, Jae-Seon;Lee, Byeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.339-344
    • /
    • 2000
  • This paper presents an improved optimal power flow algorithm, which solves an optimization problem with equality constraints with converted inequality constraints. The standard OPF and the penalty function method should do reconstructing active constraints among the inequality constraints so that the activation of the inequality constraints has been imposing an additional burden to solve OPF problem efficiently. However the proposed algorithm converts active inequality constraints into the equality constraints in order to preclude us from reconstructing the procedures. The effectiveness of the new OPF algorithm is validated by applying the IEEE 14 bus system.

  • PDF

SSF: Sentence Similar Function Based on word2vector Similar Elements

  • Yuan, Xinpan;Wang, Songlin;Wan, Lanjun;Zhang, Chengyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1503-1516
    • /
    • 2019
  • In this paper, to improve the accuracy of long sentence similarity calculation, we proposed a sentence similarity calculation method based on a system similarity function. The algorithm uses word2vector as the system elements to calculate the sentence similarity. The higher accuracy of our algorithm is derived from two characteristics: one is the negative effect of penalty item, and the other is that sentence similar function (SSF) based on word2vector similar elements doesn't satisfy the exchange rule. In later studies, we found the time complexity of our algorithm depends on the process of calculating similar elements, so we build an index of potentially similar elements when training the word vector process. Finally, the experimental results show that our algorithm has higher accuracy than the word mover's distance (WMD), and has the least query time of three calculation methods of SSF.

The size and shape optimization of plane trusses using the multi-levels method (다단계 분할기법에 의한 평면트러스의 단면치수 및 형상 최적화)

  • Pyeon, Hae-Wan;Oh, Kyu-Rak;Kang, Moon-Myung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.515-525
    • /
    • 2000
  • The purpose of this paper was to develop size & shape optimization programming algorithm of plane trusses. The optimum techniques applied in this study were extended penalty method of Sequential Unconstrained Minimization Techniques(SUMT) and direct search method with multi-variables proposed by Hooke & Jeeves. Upper mentioned two methods were used iteratively at each level of size and shape optimization routines. The design variables of size optimization were circular steel tube(structural member) diameter and thickness, those of shape optimization were joint coordinates, and the objective function was represented as total weight of truss. During the optimum design, two level procedures of size and shape optimization were interacted iteratively until the final optimum values were attained. At the previous studies about shape optimization of truss, the member sectional areas and coordinates were applied as design variables. So that they could not apply the buckling effect of compression member. In this paper, actual sizes of member and nodal coordinates are used as design variables to consider the buckling effect of compression member properly.

  • PDF

An intelligent cruise control system using a self-tuning fuzzy algorithm (자기조절 퍼지 알고리듬을 이용한 지능순항제어시스템 개발)

  • Jung, Seung-Hyun;Lee, Gu-Do;Kim, Sang-Woo;Park, Poo-Gyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The Intelligent Cruise Control system, ICC, is a driver assisting system for controlling relative speed and distance between two vehicles in the same lane. The ICC may be considered as an extension of a traditional cruise control, not only keeping a fixed speed of the vehicle, but correcting the speed also to that of a slower one ahead. This paper presents a real-time self-tuning fuzzy control algorithm to develop ICC. The self-tuning fuzzy control law is adopted to reduce the effects of nonlinearities of the vehicle and various road environments. In the self-tuning algorithm an interior penalty method is applied to preserve the inherent order of membership functions and is modified as an on-line algorithm for real time application. Via simulations, the performance of the suggested control algorithm is compared with a PID and a fuzzy control without self-tuning. The suggested control algorithm is implemented on PRV III and the results of the test driving on a local road are given.

  • PDF

Member Design of Frame Structure Using Genetic Algorithm (유전자알고리즘에 의한 골조구조물의 부재설계)

  • Lee, Hong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.91-98
    • /
    • 2004
  • Genetic algorithm is one of the best ways to solve a discrete variable optimization problem. This method is an unconstrained optimization technique, so the constraints are handled in an implicit manner. The most popular way of handling constraints is to transform the original constrained problem into an unconstrained problem, using the concept of penalty function. I present the 3 fitness functions which represent the reject strategy, the penalty strategy, and the combined strategy. I make the design program using the 3 fitness Auctions and it is applied to the design problem of a gable frame and a 2 story 3 span frame.

  • PDF

Structural Topology Optimization for the Natural Frequency of a Designated Mode

  • Lim, O-Kaung;Lee, Jin-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • The homogenization method and the density function method are common approaches to evaluate the equivalent material properties for design cells composed of matter and void. In this research, using a new topology optimization method based on the homogenized material with a penalty factor and the chessboard prevention strategy, we obtain the optimal layout of a structure for the natural frequency of a designated mode. The volume fraction of nodes of each finite element is chosen as the design variable and a total material usage constraint is imposed. In this paper, the subspace method is used to evaluate the eigenvalue and its corresponding eigenvector of the structure for the designated mode and the recursive quadratic programming algorithm, PLBA algorithm, is used to solve the topology optimization problem.

  • PDF