• Title/Summary/Keyword: penalized estimator

Search Result 18, Processing Time 0.024 seconds

A note on standardization in penalized regressions

  • Lee, Sangin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.505-516
    • /
    • 2015
  • We consider sparse high-dimensional linear regression models. Penalized regressions have been used as effective methods for variable selection and estimation in high-dimensional models. In penalized regressions, it is common practice to standardize variables before fitting a penalized model and then fit a penalized model with standardized variables. Finally, the estimated coefficients from a penalized model are recovered to the scale on original variables. However, these procedures produce a slightly different solution compared to the corresponding original penalized problem. In this paper, we investigate issues on the standardization of variables in penalized regressions and formulate the definition of the standardized penalized estimator. In addition, we compare the original penalized estimator with the standardized penalized estimator through simulation studies and real data analysis.

Sufficient conditions for the oracle property in penalized linear regression (선형 회귀모형에서 벌점 추정량의 신의 성질에 대한 충분조건)

  • Kwon, Sunghoon;Moon, Hyeseong;Chang, Jaeho;Lee, Sangin
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.2
    • /
    • pp.279-293
    • /
    • 2021
  • In this paper, we introduce how to construct sufficient conditions for the oracle property in penalized linear regression model. We give formal definitions of the oracle estimator, penalized estimator, oracle penalized estimator, and the oracle property of the oracle estimator. Based on the definitions, we present a unified way of constructing optimality conditions for the oracle property and sufficient conditions for the optimality conditions that covers most of the existing penalties. In addition, we present an illustrative example and results from the numerical study.

Maximum penalized likelihood estimation for a stress-strength reliability model using complete and incomplete data

  • Hassan, Marwa Khalil
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.355-371
    • /
    • 2018
  • The two parameter negative exponential distribution has many practical applications in queuing theory such as the service times of agents in system, the time it takes before your next telephone call, the time until a radioactive practical decays, the distance between mutations on a DNA strand, and the extreme values of annual snowfall or rainfall; consequently, has many applications in reliability systems. This paper considers an estimation problem of stress-strength model with two parameter negative parameter exponential distribution. We introduce a maximum penalized likelihood method, Bayes estimator using Lindley approximation to estimate stress-strength model and compare the proposed estimators with regular maximum likelihood estimator for complete data. We also introduce a maximum penalized likelihood method, Bayes estimator using a Markov chain Mote Carlo technique for incomplete data. A Monte Carlo simulation study is performed to compare stress-strength model estimates. Real data is used as a practical application of the proposed model.

Estimating Parameters in Muitivariate Normal Mixtures

  • Ahn, Sung-Mahn;Baik, Sung-Wook
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.357-365
    • /
    • 2011
  • This paper investigates a penalized likelihood method for estimating the parameter of normal mixtures in multivariate settings with full covariance matrices. The proposed model estimates the number of components through the addition of a penalty term to the usual likelihood function and the construction of a penalized likelihood function. We prove the consistency of the estimator and present the simulation results on the multi-dimensional nor-mal mixtures up to the 8-dimension.

Penalized rank regression estimator with the smoothly clipped absolute deviation function

  • Park, Jong-Tae;Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.673-683
    • /
    • 2017
  • The least absolute shrinkage and selection operator (LASSO) has been a popular regression estimator with simultaneous variable selection. However, LASSO does not have the oracle property and its robust version is needed in the case of heavy-tailed errors or serious outliers. We propose a robust penalized regression estimator which provide a simultaneous variable selection and estimator. It is based on the rank regression and the non-convex penalty function, the smoothly clipped absolute deviation (SCAD) function which has the oracle property. The proposed method combines the robustness of the rank regression and the oracle property of the SCAD penalty. We develop an efficient algorithm to compute the proposed estimator that includes a SCAD estimate based on the local linear approximation and the tuning parameter of the penalty function. Our estimate can be obtained by the least absolute deviation method. We used an optimal tuning parameter based on the Bayesian information criterion and the cross validation method. Numerical simulation shows that the proposed estimator is robust and effective to analyze contaminated data.

Quantile Regression with Non-Convex Penalty on High-Dimensions

  • Choi, Ho-Sik;Kim, Yong-Dai;Han, Sang-Tae;Kang, Hyun-Cheol
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.209-215
    • /
    • 2009
  • In regression problem, the SCAD estimator proposed by Fan and Li (2001), has many desirable property such as continuity, sparsity and unbiasedness. In this paper, we extend SCAD penalized regression framework to quantile regression and hence, we propose new SCAD penalized quantile estimator on high-dimensions and also present an efficient algorithm. From the simulation and real data set, the proposed estimator performs better than quantile regression estimator with $L_1$ norm.

A correction of SE from penalized partial likelihood in frailty models

  • Ha, Il-Do
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.895-903
    • /
    • 2009
  • The penalized partial likelihood based on restricted maximum likelihood method has been widely used for the inference of frailty models. However, the standard-error estimate for frailty parameter estimator can be downwardly biased. In this paper we show that such underestimation can be corrected by using hierarchical likelihood. In particular, the hierarchical likelihood gives a statistically efficient procedure for various random-effect models including frailty models. The proposed method is illustrated via a numerical example and simulation study. The simulation results demonstrate that the corrected standard-error estimate largely improves such bias.

  • PDF

Two-Stage Penalized Composite Quantile Regression with Grouped Variables

  • Bang, Sungwan;Jhun, Myoungshic
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.259-270
    • /
    • 2013
  • This paper considers a penalized composite quantile regression (CQR) that performs a variable selection in the linear model with grouped variables. An adaptive sup-norm penalized CQR (ASCQR) is proposed to select variables in a grouped manner; in addition, the consistency and oracle property of the resulting estimator are also derived under some regularity conditions. To improve the efficiency of estimation and variable selection, this paper suggests the two-stage penalized CQR (TSCQR), which uses the ASCQR to select relevant groups in the first stage and the adaptive lasso penalized CQR to select important variables in the second stage. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.

Non-convex penalized estimation for the AR process

  • Na, Okyoung;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.453-470
    • /
    • 2018
  • We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators achieve some standard theoretical properties such as weak and strong oracle properties which have been proved in sparse linear regression framework. The results hold when the maximal order of the AR process increases to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases. Further, we construct a practical method to select tuning parameters using generalized information criterion, of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR process. Simulation studies are given to confirm the theoretical results.

Sparse Matrix Computation in Mixed Effects Model (희소행렬 계산과 혼합모형의 추론)

  • Son, Won;Park, Yong-Tae;Kim, Yu Kyeong;Lim, Johan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.281-288
    • /
    • 2015
  • In this paper, we study an approximate procedure to evaluate a penalized maximum likelihood estimator (MLE) for a mixed effects model. The procedure approximates the Hessian matrix of the penalized MLE with a structured sparse matrix or an arrowhead type matrix to speed its computation. In this paper, we numerically investigate the gain in computation time as well as approximation error from the considered approximation procedure.