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Abstract

The penalized partial likelihood based on restricted maximum likelihood method
has been widely used for the inference of frailty models. However, the standard-error
estimate for frailty parameter estimator can be downwardly biased. In this paper we
show that such underestimation can be corrected by using hierarchical likelihood. In
particular, the hierarchical likelihood gives a statistically efficient procedure for various
random-effect models including frailty models. The proposed method is illustrated via
a numerical example and simulation study. The simulation results demonstrate that
the corrected standard-error estimate largely improves such bias.

Keywords: Frailty Models, hierarchical likelihood, marginal likelihood, penalized par-
tial likelihood, random effects, restricted maximum likelihood.

1. Introduction

Frailty models, Cox’s (1972) proportional hazard models allowing random-effect terms,
have been widely used for the analysis of various correlated survival data (Hougaard, 2000;
Duchateau and Janssen, 2008). Here, the frailty means an unobserved random effect in the
hazard models. For the inferences the marginal likelihood, which is obtained by integrating
out the frailties, has been often used (Nielsen et al., 1992; Vaida and Xu, 2000). However,
the integration is generally intractable except for a shared gamma frailty model (Nielsen et
al., 1992; Ha et al., 2001; Ha, 2006).

As an alternative, the penalized partial likelihood (PPL) has been suggested (McGilchrist
1993; Ripatti and Palmgren, 2000), which is constructed using partial likelihood (Cox,
1972; Breslow, 1974) and a penality function (e.g. gamma or normal density) for frailty.
The implementation of PPL method is relatively easy because the difficult integration is
not required. The PPL method based on restricted maximum likelihood (REML) in the
normal frailty model (McGilchrist, 1993) works well. However, the variance estimate of
PPL frailty-parameter estimator is substantially underestimated (Ripatti and Palmgren,
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2000) due to ignoring an important derivative term in Section 3.2, even though that of
regression parameter estimator performs well. The hierarchical likelihood (h-likelihood; Lee
and Nelder, 1996; Ha et al., 2001) is defined from the joint density function of response
variable and unobserved random effect, and also avoids the integration itself as in the PPL. In
particular, the h-likelihood provides a statistically efficient estimation procedure for various
random-effect models including frailty models (Lee et al., 2006; Ha, 2008). Thus, in this
paper we propose how to correct such underestimation using h-likelihood.

The paper is organized as follows. In Section 2 we review the PPL method in frailty
models. In Section 3 we study the relationship between PPL and the h-likelihood and then
show how to correct the variance of frailty-parameter estimator. The proposed method is
demonstrated with a numerical example based on a well-known real data set in Section 4,
followed by simulation study. Finally, some remarks are given in Section 5.

2. Penalized partial likelihood in frailty models

2.1. Frailty models

Assume that data consist of censored time-to-event observations from q subjects, each with
ni observations, i = 1, . . . , q. Let Tij be the survival time for the j th observation of the i
th subject and Cij be the corresponding censoring time (i = 1, . . . , q, j = 1, . . . , ni, n =∑
i ni). Let the observable random variables be

yij = min(Tij , Cij) and δij = I(Tij ≤ Cij),

where I(·) is the indicator function. Denote by vi the unobserved log-frailty (or random
effect) for the i th subject. Given vi, the conditional hazard function of Tij takes the form

λij(t|vi) = λ0(t) exp(ηij), (2.1)

where λ0(t) is an unspecified baseline hazard function, and

ηij = xTijβ + vi

is the linear predictor for the hazards, β is a p × 1 vector of unknown regression parame-
ters corresponding to fixed covariates xij = (xij1, . . . , xijp)T. Here, the term xTijβ in (2.1)
does not include an intercept term because of identifiable purposes. In this paper, for the
distribution of independent random effects vi ’s we assume a normal distribution with mean
E(vi) = 0 and var (vi) = α (McGilchrist, 1993; Ha et al., 2001). In particular, the normal
assumption is very useful for modelling multi-component (Ha et al., 2007) or correlated
frailties (Vaida and Xu, 2000). For the vi other frailty distribution such as log-gamma can
be assumed (Hougaard, 2000).

Let Cij be censoring time corresponding to survival time Tij . Then we have the observable
random variables:

yij = min(Tij , Cij) and δij = I(Tij ≤ Cij),

where I(·) is the indicator function. Since the functional form of λ0(t) is unknown, following
Breslow (1972, 1974) and Ha et al. (2001) we consider the baseline cumulative hazard
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function Λ0(t) to be a step function with jumps at the r distinct observed death times,

Λ0(t) =
∑

k:y(k)≤t

λ0k,

where y(k) is the k th (k = 1, · · · , r) smallest distinct death time among the yij ’s, and
λ0k = λ0(y(k)).

2.2. Penalized partial likelihood

For the inference of model (2.1) Ripatti and Palmgren (2000) and Therneau and Grambsch
(2000) proposed the use of PPL, defined by

`PPL = `PL − `Pen, (2.2)

where

`PL =
∑
ij

δijηij −
∑
k

dk log

 ∑
(i,j)∈R(k)

exp(ηij)


is the partial log-likelihood of Breslow (1974) and

`Pen = −
∑
i

`2i

is a penality function having the logarithm of the normal density function for vi with pa-
rameter α

`2i = `2i(α; vi) = −
1
2
log(2πα)−

1
2α
v2
i . (2.3)

Here d(k) is the number of deaths at y(k) and R(k) = R(y(k)) =
{

(i, j) : yij ≥ y(k)
}

is the
risk set at y(k).

The estimation procedure of fixed parameters (β, α) and random effects v = (v1, . . . , vq)T

is as follows. Given α, the estimation of fixed and random effects, τ = (β, v)T , is obtained
by solving

∂`PPL/∂τ = 0. (2.4)

Note that the asymptotic covariance matrix of β̂ is obtained from the inverse of information
matrix, −∂2`PPL/∂τ

2.
For the estimation of α the PPL method uses the first-order Laplace approximation (Th-

erneau and Grambsch, 2000) for the modified marginal likelihood

mP = log
{∫

exp(`PPL)dv
}
.
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That is, as an approximation of mP Ripatti and Palmgren (2000) proposed to use

`PPL1 = [`PPL −
1
2

log |K
′′
(v)|]|v=bv (2.5)

where K
′′
(v) = −∂2`PPL/∂v

2 and v̂ solves ∂`PPL/∂v = 0 in (2.4). McGilchrist (1993) also
suggested a restricted likelihood to use K

′′
(τ), instead of K

′′
(v) in (2.5), defined by

`PPL2 = [`PPL −
1
2

log |K
′′
(τ)|]|τ=bτ (2.6)

where K
′′
(τ) = −∂2`PPL/∂τ

2 and τ̂ solves ∂`PPL/∂τ = 0. Note that the maximizations of
`PPL1 and `PPL2 give an approximated ML and REML estimators, respectively:

α̂PPL1 =
∑
i

v̂i/(q − r1) and α̂PPL2 =
∑
i

v̂i/(q − r2), (2.7)

where r1 = tr(K11)/α̂ with K11 = −∂2`PPL/∂v
2, and r2 = tr(K22)/α̂ and K22 is the matrix

given by the bottom right-hand corner of the inverse of K
′′
(τ). Following McGilchrist (1993)

and Ripatti and Palmgren (2000), the corresponding asymptotic variances are, respectively,
given by

var(α̂PPL1) = 2α2[q − 2r1 + α−2tr(K2
11)]−1, (2.8)

var(α̂PPL2) = 2α2[q − 2r2 + α−2tr(K2
22)]−1. (2.9)

McGilchrist (1993) showed via simulation studies that α̂PPL2 (i.e. REML estimator) pro-
vides better results in terms of biases, especially in the frailty parameter: see also Ha and Lee
(2003). Thus, in this paper we consider the REML estimator for frailty parameter. However,
the estimate of var(α̂PPL2) is still downwardly biased as in var(α̂PPL1) (McGilchrist, 1993;
Ripatti and Palmgren, 2000). We shall show how to correct the REML variance below.

3. Correction of SE in PPL

In this section we study the relationship between PPL and the h-likelihood. From this we
propose how to correct the PPL variance in (2.9).

3.1. Relationship between PPL and h-likelihood

Following Ha et al. (2001), the h-likelihood for frailty model (2.1) is defined by

h = h(β, λ0, α) =
∑
ij

`1ij +
∑
i

`2i, (3.1)

where ∑
ij

`1ij =
∑
ij

δij {log λ0(yij) + ηij} −
∑
ij

Λ0(yij) exp(ηij)

=
∑
k

d(k) log λ0k +
∑
ij

δijηij −
∑
k

λ0k

 ∑
(i,j)∈R(k)

exp(ηij)

 ,
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`1ij = `1ij(β, λ0; yij , δij |vi) is the logarithm of the conditional density function for yij and
δij given vi, `2i = `2i(α; vi) is given in (2.3) and λ0 = (λ01, . . . , λ0r)T .

We now show the relationship between PPL and h-likelihood. Since the dimension of λ0

increases with sample size n, for the estimation of (β, v) Ha et al. (2001) proposed to use
the profile h-likelihood h∗ with λ0 eliminated:

h∗ = h|
λ0=cλ0

, (3.2)

where

λ̂0k =
d(k)∑

(i,j)∈R(y(k))
exp(xTijβ + vi)

(3.3)

are solutions of the estimating equations, ∂h/∂λ0k = 0, for k = 1, . . . , r. Substituting (3.1)
and (3.3) into (3.2) gives

h∗ =
∑
ij

δijηij −
∑
k

dk log

 ∑
(i,j)∈R(k)

exp(ηij)

+
∑
k

d(k)

{
log d(k) − 1

}
+
∑
i

`2i, (3.4)

From (3.2) and (3.4) we see that h∗ is proportional to the PPL

h∗ = `PPL +
∑
k

d(k)

{
log d(k) − 1

}
.

Since ∂h∗/∂τ = ∂`PPL/∂τ = 0, for the estimation of ( β, v ) given α we also see that
the PPL and h-likelihood lead to the same estimation results. Furthermore, we have that
−∂2h∗/∂τ2 = −∂2`PPL/∂τ

2. In particular, Ha et al. (2001) and Ha and Lee (2003) showed
that the inverse of Hessian matrix H∗ = −∂2h∗/∂τ2 gives the asymptotic covariance matrix
of β̂ and v̂ − v, given by

H∗(β, v) = −
(
∂2h∗/∂β2 ∂2h∗/∂β∂v
∂2h∗/∂v∂β ∂2h∗/∂v2

)
=
(
XTW ∗X XTW ∗Z
ZTW ∗X ZTW ∗Z +R

)
(3.5)

where X is the n × p matrix whose i th row vector is xTij , Z is the n × q group indicator
matrix whose i th row vector is zTij , W

∗ = W ∗(β, v) is the n × n weight matrix given in
Appendix 2 of Ha and Lee (2003), and R = diag

{
−∂2`2i/∂v

2
i

}
= α−1Iq is the q×q diagonal

matrix with q dimensional identity matrix Iq. Note that the upper left-hand corner of H−1

in (3.5), provides a covariance matrix of β̂, given by

var(β̂) = (XTV −1X)−1 with V = W ∗−1 + ZR−1ZT . (3.6)

Note that this covariance matrix is the same as that of PPL estimator vector of β, which
performs well (Ha et al., 2001; Ha and Lee, 2003, 2005).

Next, for the estimation of the frailty parameter α we use Lee and Nelder’s (2001) adjusted
profile h-likelihood (i.e. extended restricted likelihood), defined by

pτ (h∗) = [h∗ −
1
2
log det {H∗(τ)/(2π)}]|τ=bτ , (3.7)
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where H∗(τ) = −∂2h∗/∂τ2 and τ̂ solves ∂h∗/∂τ = 0. Note here that τ̂ = τ̂(α) =
(β̂(α), v̂(α))T . Thus, the pτ (h∗) is the function of α only which eliminate β and v from h∗,
a profile h-likelihood from which the nuisance parameters λ0 have already been eliminated.
The h-likelihood estimator for α, a REML estimator, is obtained by solving

∂pτ (h∗)/∂α = 0. (3.8)

This also yields McGilchrist’s (1993) REML estimator of α (Ha et al., 2001).
In summary, the h-likelihood estimator and its variance for β are the same as those of PPL.

The h-likelihood estimator for α is also the same as PPL estimator based on the REML.

3.2. Corrected SE

Following the relationship between h-likelihood and PPL, the variance of α̂PPL2 in (2.9)
can be derived by ignoring the ∂τ̂/∂α term in computing −∂2pτ (h∗)/∂α2, leading to an
underestimation of the true variance of α̂PPL2.

We now show how to correct it using pτ (h∗) in (3.7). The pτ (h∗) can be written as

pτ (h∗) = h̃−
1
2
log det(H̃) (3.9)

where h̃ = h∗|τ=bτ = h∗(τ̂(α), α) and H̃ = H∗|τ=bτ = H∗(τ̂(α), α) depend on α, and c =
{(p+ q)/2} log(2π) is a constant. Following Lee and Nelder (2001) and Ha and Lee (2003),
we allow for ∂v̂/∂α in computing the ∂2pτ (h∗)/∂α2 terms in (3.9), but not for ∂β̂/∂α.
Then the derivation and computation procedure of the Hessian matrix, −∂2pτ (h∗)/∂α2, is
as follows.

−
∂2pτ (h∗)
∂α2

= −
∂2h̃

∂α2
+

1
2
tr

{
H̃−1 ∂

2H̃

∂α2
− (H̃−1 ∂H̃

∂α
)(H̃−1 ∂H̃

∂α
)

}
. (3.10)

Following Appendix 2 of Ha et al. (2001), we have that

∂h̃

∂α
=

{
∂h∗

∂α
+
∂h∗

∂v
·
∂v̂

∂α

}∣∣∣∣
v=bv

=
∂h∗

∂α

∣∣∣∣
v=bv

since
∂h∗

∂v
|v=bv = 0. Thus, the first term on the right hand side of (3.10) is given by

∂2h̃

∂α2
=

{
∂2h∗

∂α2
+
∂2h∗

∂α∂v
·
∂v̂

∂α

}∣∣∣∣
v=bv.

Here, since
∂h∗

∂α
=

∂

∂α
(
∑
i `2i) we obtain

∂2h∗

∂α2
=
∑
i(

1
2
α−2 − α−3v2

i ) and
∂2h∗

∂α∂v
= α−2v.
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Note that following Lee et al. (2006, pp. 316) and (3.5), we also have that

∂v̂

∂α
= −

(
− ∂2h∗

∂v2

)−1(
− ∂2h∗

∂v∂α

)∣∣∣∣
v=bv (3.11)

= −(ZT ŴZ + R̂)−1(−α−2v̂),

where Ŵ = W ∗|v=bv = W ∗(v̂(α), α) and R̂ = α−1Iq = R. The second term of (3.10) is
calculated with

∂H̃

∂α
=
(
XTW

′
X XTW

′
Z

ZTW
′
X ZTW

′
Z +R

′

)
and

∂2H̃

∂α2
=
(
XTW

′′
X XTW

′′
Z

ZTW
′′
X ZTW

′′
Z +R

′′

)
,

where W
′

= ∂Ŵ/∂α, R
′

= −α−2Iq, W
′′

= ∂2Ŵ/∂α2 and R
′′

= 2α−3Iq. Notice that for the
computation of W

′
and W

′′
, the ∂v̂/∂α and ∂2v̂/∂α2 terms should be considered. Thus, the

corrected variance of α̂ is obtained from the inverse of −∂2pτ (h∗)/∂α2 based on (3.10) and

(3.11). That is, the corresponding SE is given by
√
{−∂2pτ (h∗)/∂α2}−1. We investigate its

performance by simulation below.

4. Illustration

For the illustration, we compare the performance of the corrected SE in (3.10) with that of
the PPL’s SE (i.e. standard SE) based on REML in (2.9). For this we present a numerical
example and a simulation study. For the model fitting and computation we used SAS/IML.

4.1. Numerical example

The kidney infection data (McGilchrist and Aisbett, 1991) consist of times to the first
and second recurrences of infection in 38 kidney patients using a portable dialysis machine.
Here, each survival time is time to infection since insertion of the catheter. The survival
times from the same patient are likely to be related because of frailty describing the patient’s
effect. We use a single covariate, the sex of the patients, coded as 1 for male and 0 for female.
The estimation results are presented in Table 4.1.

Table 4.1 The PPL estimation results for frailty parameter α in the kidney infection databα Standard SE Corrected SE bβ (SE)
0.509 0.303 0.333 -1.368 (0.427)

As expected, the corrected SE is larger than the standard SE even though α̂ is somewhat
small as in α̂ = 0.509. This result indicates that the standard SE may be underestimated.

4.2. Simulation study

Simulated studies, based upon 200 replications of simulated data, are presented to evaluate
the performances of the standard and corrected SEs for the PPL estimator for α. The
simulation scheme is similar to that of McGilchrist (1993). That is, we generate data from the
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frailty model (1) assuming the exponential baseline hazard λ0(t) = 0.1, regression parameter
β = 0.5 and the variance α = 0.5, 1, 4. Here, we set a single covariate xij to be 0 for the
first q/2 individuals (control group), and xij to be 1 for the remaining q/2 individuals
(treatment group). We also set the sample size n =

∑q
i=1 ni = 90 or 270, which corresponds

to q = 30 or 90 with ni = 3, respectively. The corresponding censoring times Cij are
generated from an exponential distribution with parameter empirically determined to achieve
approximately the right censoring rate, around 20%. For the 200 replications we computed
the bias, standard deviation (SD), the mean of the estimated SEs for α̂. The standard and
corrected SEs are obtained from (2.9) and (3.10), respectively. For the regression parameter
β the corresponding mean, SE and SD are also given.

Table 4.2 Simulations results for the PPL estimation of parametersbα bβ
n α Bias Standard SE Corrected SE SD Bias SE SD
90 0.5 0.019 0.271 0.351 0.354 -0.012 0.361 0.344

1.0 0.021 0.411 0.540 0.511 -0.027 0.442 0.452
4.0 -0.212 1.194 1.475 1.378 -0.078 0.750 0.776

270 0.5 0.013 0.149 0.202 0.198 -0.011 0.220 0.233
1.0 -0.020 0.216 0.237 0.245 -0.017 0.263 0.252
4.0 -0.145 0.643 0.840 0.832 -0.013 0.432 0.436

The results of PPL estimates are summarized in Table 4.2. The larger the frailty parameter
α, the bigger the bias in its estimation as in simulation results by McGilchrist (1993) and
Ripatti and Palmgren (2000). However, the estimates for fixed parameters (α, β) overall
work well as sample size n increases. In Table 4.2, for α the SD is the estimate of the true
{var(α̂)}1/2 and the standard or corrected SE is the average of SE estimates corresponding to
α̂. The corrected SE performs well as judged by the very good agreement between corrected
SE and SD, while the standard SE does not. That is, the standard SE is substantially
underestimated: see also McGilchrist (1993) and Ripatti and Palmgren (2000). In addition,
for β the estimated SE also works well, which confirms simulation results of Ha et al. (2001)
and Ha and Lee (2003).

5. Remarks

We have showed that the correction for the SE of the PPL is possible by using h-likelihood.
Care is necessary in implementing the SE of frailty parameter estimator when the number
of nuisance parameters λ0k ’s in the baseline hazards increases with sample size n. Here,
the consideration of the ∂v̂/∂α term is important. The proposed method was developed in
a simple frailty model (2.1) with one random component. Thus, extension of our method to
correlated or multi-component frailty models (Ripatti and Palmgren, 2000; Yau, 2001; Ha
et al., 2007) would be an interesting further work.
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