• Title/Summary/Keyword: penalized

Search Result 169, Processing Time 0.022 seconds

Structured Controller Synthesis Using a Penalized LMI Method (페널티화된 LMI를 이용한 구조적 제약이 있는 제어기 설계)

  • Kim Seog-Joo;KWon Soonman Kwon;Cheon Jong-Min;Moon Young-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.656-661
    • /
    • 2005
  • This paper is concerned with an iterative linear matrix inequality (LMI) approach to the design of a structurally constrained output feedback controller such as decentralized control. The structured synthesis is formulated as a novel rank-constrained LMI optimization problem, where the controller parameters are explicitly described so as to impose structural constraints on the parameter matrices. An iterative penalty method is applied to solve the rank-constrained LMI problem. Numerical experiments are performed to illustrate the effectiveness of the proposed method.

Support vector quantile regression ensemble with bagging

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.677-684
    • /
    • 2014
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among random variables. To improve the estimation performance of SVQR we propose to use SVQR ensemble with bagging (bootstrap aggregating), in which SVQRs are trained independently using the training data sets sampled randomly via a bootstrap method. Then, they are aggregated to obtain the estimator of the quantile regression function using the penalized objective function composed of check functions. Experimental results are then presented, which illustrate the performance of SVQR ensemble with bagging.

SMOSLG Algorithm for Digital Image Restoration (디지털 영상복원을 위한 SMOSLG 알고리즘)

  • Song, Min-Koo;Yum, Joon-Keun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3694-3702
    • /
    • 1999
  • OSL algorithm has an advantage that repeated algorithm is easily derived, even though penalty function which has a complicated transcendental function. In order to solve this problem, we suggested MPEMG algorithm. However, though this algorithm extend convergence rate of smoothing constant, it include the problem that is not faster than OSL algorithm in the convergence rate increasing penalized log-likelihood. Accordingly, in this paper, we will suggest SMOSLG digital image restoration algorithm which is fast in the convergence rate as well as extend convergence region of smoothing constant. And also we will study the usefulness of algorithm suggested through digital image simulation.

  • PDF

Robust Decoding of Barcode Signals Acquired under Nonuniform Illumination (불균일 조명 하에서 획득된 바코드 신호의 강인 복원)

  • Lee, Han-A;Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.718-724
    • /
    • 2008
  • We present a novel joint barcode deblurring and nonuniform illumination compensation algorithm for barcode signals whose number of modules is known. The proposed algorithm is based on a penalized least squares method using a roughness penalty function for an illumination model and a double well penalty function for a barcode signal model. In simulations, the proposed method shows an improved performance compared with a conventional method without compensating nonuniform illumination effects. In addition, the proposed method converges quickly during optimization(within 15 iterations), thereby showing strong possibility for real time decoding of barcode signals.

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2015
  • We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

A two-step approach for variable selection in linear regression with measurement error

  • Song, Jiyeon;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2019
  • It is important to identify informative variables in high dimensional data analysis; however, it becomes a challenging task when covariates are contaminated by measurement error due to the bias induced by measurement error. In this article, we present a two-step approach for variable selection in the presence of measurement error. In the first step, we directly select important variables from the contaminated covariates as if there is no measurement error. We then apply, in the following step, orthogonal regression to obtain the unbiased estimates of regression coefficients identified in the previous step. In addition, we propose a modification of the two-step approach to further enhance the variable selection performance. Various simulation studies demonstrate the promising performance of the proposed method.

Efficient estimation and variable selection for partially linear single-index-coefficient regression models

  • Kim, Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.1
    • /
    • pp.69-78
    • /
    • 2019
  • A structured model with both single-index and varying coefficients is a powerful tool in modeling high dimensional data. It has been widely used because the single-index can overcome the curse of dimensionality and varying coefficients can allow nonlinear interaction effects in the model. For high dimensional index vectors, variable selection becomes an important question in the model building process. In this paper, we propose an efficient estimation and a variable selection method based on a smoothing spline approach in a partially linear single-index-coefficient regression model. We also propose an efficient algorithm for simultaneously estimating the coefficient functions in a data-adaptive lower-dimensional approximation space and selecting significant variables in the index with the adaptive LASSO penalty. The empirical performance of the proposed method is illustrated with simulated and real data examples.

A numerical study on group quantile regression models

  • Kim, Doyoen;Jung, Yoonsuh
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.4
    • /
    • pp.359-370
    • /
    • 2019
  • Grouping structures in covariates are often ignored in regression models. Recent statistical developments considering grouping structure shows clear advantages; however, reflecting the grouping structure on the quantile regression model has been relatively rare in the literature. Treating the grouping structure is usually conducted by employing a group penalty. In this work, we explore the idea of group penalty to the quantile regression models. The grouping structure is assumed to be known, which is commonly true for some cases. For example, group of dummy variables transformed from one categorical variable can be regarded as one group of covariates. We examine the group quantile regression models via two real data analyses and simulation studies that reveal the beneficial performance of group quantile regression models to the non-group version methods if there exists grouping structures among variables.

Ovarian Cancer Prognostic Prediction Model Using RNA Sequencing Data

  • Jeong, Seokho;Mok, Lydia;Kim, Se Ik;Ahn, TaeJin;Song, Yong-Sang;Park, Taesung
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.32.1-32.7
    • /
    • 2018
  • Ovarian cancer is one of the leading causes of cancer-related deaths in gynecological malignancies. Over 70% of ovarian cancer cases are high-grade serous ovarian cancers and have high death rates due to their resistance to chemotherapy. Despite advances in surgical and pharmaceutical therapies, overall survival rates are not good, and making an accurate prediction of the prognosis is not easy because of the highly heterogeneous nature of ovarian cancer. To improve the patient's prognosis through proper treatment, we present a prognostic prediction model by integrating high-dimensional RNA sequencing data with their clinical data through the following steps: gene filtration, pre-screening, gene marker selection, integrated study of selected gene markers and prediction model building. These steps of the prognostic prediction model can be applied to other types of cancer besides ovarian cancer.

Stable activation-based regression with localizing property

  • Shin, Jae-Kyung;Jhong, Jae-Hwan;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.281-294
    • /
    • 2021
  • In this paper, we propose an adaptive regression method based on the single-layer neural network structure. We adopt a symmetric activation function as units of the structure. The activation function has a flexibility of its form with a parametrization and has a localizing property that is useful to improve the quality of estimation. In order to provide a spatially adaptive estimator, we regularize coefficients of the activation functions via ℓ1-penalization, through which the activation functions to be regarded as unnecessary are removed. In implementation, an efficient coordinate descent algorithm is applied for the proposed estimator. To obtain the stable results of estimation, we present an initialization scheme suited for our structure. Model selection procedure based on the Akaike information criterion is described. The simulation results show that the proposed estimator performs favorably in relation to existing methods and recovers the local structure of the underlying function based on the sample.