Ductile cast iron has a good ductility and ductility and toughness than those of gray cast iron, because the shape of graphite is spheroidal. It has been reported that the strengthening and toughening of the ductile cast iron was resulted from the good modification of various matrix structures obtained by the heat treatment or addition of alloying elements. This study aims to investigate the effect of various special heat treatment(Cyclic Heat Treatment, Intermediate Heat Treatment, Step Quenching), austempering and alloying element(Ni) on the strength and toughness of ductile cast iron. The results obtained from this study are summarized as follows. 1) With addition of Ni, the amount of pearlite or bainite were increased and the morphologies of pearlite or bainite became finer by special heat treatments. 2) As the Ni added and not added ductile cast iron were treated by austenitizing at $900^{\circ}C$ and $840^{\circ}C$, in the latter the austenite was mostly formed in the vicinity of eutectic cell boundary, but in the former on the whole matrix. 3) In cyclic heat treatment, the volume fraction of pearlite was increased and the shape of pearlite was fined with increase of the number of cycle. 4) The shape of pearlite was mostly bar type in the intermediate heat treatment, but spheroidal type in step quenching. 5) The mechanical properties of ductile cast iron containing 1.5%Ni austempered at $400^{\circ}C$ for 25min. after austenitizing at $900^{\circ}C$ for 15min. were a good value of hardness 105(HRB), impact energy 12.5(kg.m), tensile strength 112($kg/mm^2$) and elongation 6.8(%).
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2004.10a
/
pp.211-214
/
2004
In the present study, the effect of SIDT (Strain Induced Dynamic Transformation) on the microstructure of medium carbon steels was investigated to develop spheroidized annealing-free steel wire rods. When $0.45\%C$ steels were hot-deformed under the conditions of heavy reduction at low temperatures, a microstructure quite different from conventional ferrite-pearlite structure was obtained. It was considered that this ferrite-cementite microstructure was obtained because very small retained austenite grains existing between fine SIDT ferrites prefer to transform to cementite and ferrite instead of pearlite during cooling. Through the present study, $0.45\%C$ steels containing ferrite-cementite (FC) structure instead of ferrite-pearlite structure was obtained in as-rolled state by introducing SIDT. The specimen containing the FC structure was much softer than that containing conventional ferrite-pearlite structure. Therefore, it is concluded that deforming medium carbon steels under the conditions of SIDT is a very powerful method to obtain soft steel wire rods which could be cold-forged without softening heat-treatment
This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.
This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.
In this study, variations in the microstructure and hardness of a low-carbon SCM415 steel with austenitizing temperature and cooling rate are investigated. When the austenitizing temperature is lower than the A1 temperature (738.8 ℃) of the SCM415 steel, the microstructures of both the air-cooled and water-cooled specimens consist of ferrite and pearlite, which are similar to the microstructure of the initial specimen. When heat treatment is conducted at temperatures ranging from the A1 temperature to the A3 temperature (822.4 ℃), the microstructure of the specimen changes depending on the temperature and cooling rate. The specimens air- and water-cooled from 750 ℃ consist of ferrite and pearlite, whereas the specimen water-cooled from 800 ℃ consists of ferrite and martensite. At a temperature higher than the A3 temperature, the air-cooled specimens consist of ferrite and pearlite, whereas the water-cooled specimens consist of martensite. At 650 ℃ and 700 ℃, which are lower than the A1 temperature, the hardness decreases irrespective of the cooling rate due to the ferrite coarsening and pearlite spheroidization. At 750 ℃ or higher, the air-cooled specimens have smaller grain sizes than the initial specimen, but they have lower hardness than the initial specimen owing to the increased interlamellar spacing of pearlite. At 800 ℃ or higher, martensitic transformation occurs during water cooling, which results in a significant increase in hardness. The specimens water-cooled from 850 ℃ and 950 ℃ have a complete martensite structure, and the specimen water-cooled from 850 ℃ has a higher hardness than that water-cooled from 950 ℃ because of the smaller size of prior austenite grains.
Taniyama, H.;Eda, H.;Sato, J.;Shimizu, J.;Zhou, L.
Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
/
2002.10b
/
pp.197-198
/
2002
In order to produce micromachined parts with a great dimensional accuracy, it is important to clarify the influence of heterogeneity and/or discontinuity of workpiece materials on the micromachining process, because almost all structural materials are composed of heterogeneous and/or homogeneous crystal grains at the micro scale. Experiments where JIS S25C steel had been scratched with a diamond triangular pyramid indenter were conducted under a field emission scanning electron microscope (FE-SEM). The difference of plastic deformation at a groove scratched between a pearlite zone and a proeutectoid ferrite zone was investigated through comparison with the groove scratched of a pearlite zone and a proeutectoid ferrite zone.
Isothermal transformation behavior during patenting and variations of microstructure and tensile strength of patented wires were investigated in Si-added high carbon steel. The TTT curves of the steels were made for two different austenitizing temperature. As the salt bath temperature was increased, the observed microstructures were bainite at $450^{\circ}C$, the mixture of bainite and pearlite at $500^{\circ}C$, and to pearlite at $600^{\circ}C$, The tensile strength of patented wire exhibited the highest value when the structure was pearlite. while the bainitic structure showed the lowest.
The effects of alloying elements on microstructural features and mechanical properties in 0.55%C medium carbon steels were investigated. The samples were austenitized at 105$0^{\circ}C$ for 30min. followed by quenching in a salt bath in the temperature range of 500 ~ $620^{\circ}C$. The addition of Cr resulted in the decrease of the volume fraction of pro-eutectoid ferrite and interlamellar spacing in pearlite and the increase of strength. However, the addition of B caused the increase of the volume fraction of pro-eutectoid ferrite. Reduction of area and Charpy impact values were influenced by the combined effect of microstructural features, such as the volume fraction of pro-eutectoid ferrite, interlamellar spacing and the thickness of lamellar cementite in pearlite.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2006.05a
/
pp.159-163
/
2006
The effects of annealing temperature and time on mechanical properties and microstructures were studied in cold drawn pearlitic steel wires containing 0.84wt% Si. Annealing was performed from $200^{\circ}C$ to $450^{\circ}C$ with different time of 30sec, 1min, 15min and 1hr. The increase of tensile strength at low temperature was related with strain ageing. The decrease of tensile strength at high annealing temperature was related with spherodization of cementite and the occurrence of recovery of the lamellar ferrite in the pearlite. The improvement of ductility was connected with spherodization of cementite plate in pearlite and recovery process by reduction of high dislocation density at short time annealing temperature of $400^{\circ}C$.
The effects of thickness, silicon and manganese contents on the mechanical properties of 3.3 wt%C-0.1 wt%S thin-section gray cast iron plates were investigated. The eutectic cell counts and volume fraction of pearlite in the matrix decreased with increased thickness and therefore the strength and hardness decreased with it. Even though the eutectic cell count increased with increased silicon content, the volume fraction of pearlite decreased and the strength and hardness decreased with it. The pearlite was refined more with increased manganese content and therefore the strength and hardness increased with it.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.