• Title/Summary/Keyword: peak flood discharge

Search Result 154, Processing Time 0.032 seconds

A Forecasting Model for the Flood Peak Stage and Flood Travel Time by Hydraulic Flood Routing

  • Yoon, Yong-Nam;Park, Moo-Jong
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.11-19
    • /
    • 1993
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole large reservoir system in the Han River, Korea. The computed flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by a rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood travel time, release rate and duration from the upper dam.

  • PDF

Forecasting of Peak Flood Stage at Downstream Location and the Flood Travel Time by Hydraulic Flood Routing (수리학적 홍수추적에 의한 댐 방류시 하류수위 및 주요 하도구간별 홍수도달 시간의 예측)

  • 윤용남;박무종
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.115-124
    • /
    • 1992
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole reservoir system in the Han River. The computed peak flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood release rate and duration from the upper dam.

  • PDF

Effect of the Peace-Dam Construction on the Flood Discharge and the Flood Stage of the Hwachun-Dam

  • Jun, Byoung-Ho;Shin, Hyun-Suk;Yoon, Jae-Young
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.17-31
    • /
    • 1994
  • Because of the Keumkangsan-Dam and the Peace-Dam constructed in recent years, it is expected that the peak flood discharge and the peak flood stage at the Hwachun-Dam site have been changed. In this study, two methods were used to simulate and compare the effects of the upstream dam construction on the change of the discharge and the stage. One is the storage function method widely used for the hydrological routing in the country. The other is the DWOPER(Dynamic Wave Operational Model) package conducted on four different scenarios: (1) before the construction of the Keumkangsan-Dam and the Peace-Dam; (2) the exclusion of the Keumkangsan-Dam watershed (before the construction of the Peace-Dam); (3) the exclusion of the Keumkangsan-Dam watershed (after the construction of the Peace-Dam) ; (4) the exclusion of the Peace-Dam watershed. The results of the four test cases from the two methods show that the peak flood discharge and the peak flood stage at the Hwachun-Dam site are reduced due to the construction of the Peace-Dam. From these findings, it is suggested that the operational criteria for the optimal dam-operation of the Hwachun-Dam need to be modified.

  • PDF

Review on Application Tolerance of Unit Hydrograph for Calculating Flood Runoff Hydrograph (홍수 유출 수문곡선 산출에 단위유량도 적용 오차의 정도 검토)

  • Yoo, Ju-Hwan;Yoon, Yeo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.346-349
    • /
    • 2010
  • In this study several unit hydrographs by rainfall storms are derived and moving averaged unit hydrograph is extracted from them based on the rainfall-runoff data in a small basin 8.5 $km^2$ wide. And peak discharges and peak times of the unit hydrographs are investigated and reviewed. And then a representative unit hydrograph of the moving averaged one is applied to the linear convolution integration for obtaining the flood discharge hydrograph and peak discharge and time of its result are researched and inspected. Variance in application of the representative unit hydrograph in a basin on assumption of linearity is appeared and this is given as a counterevidence about that the runoff response from rainfall on a basin has nonlinear characteristics. And As a result of application of derived representative unit hydrograph the errors in peak discharge and time are investigated.

  • PDF

Determination of Design Flood Levels for the Tidal Reach of the Han River

  • Jun, Kyungsoo;Li, Li
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.173-173
    • /
    • 2015
  • The flood water level in tidal river is determined by the joint effects of flood discharge and tidal water levels at downstream boundary. Due to the variable tidal boundary conditions, the evaluated design water levels associated with a certain flood event can be significantly different. To avoid determining of design water levels just by a certain tidal boundary condition and remove the influence of variability in boundary condition from the evaluation of design water levels, a probabilistic approach is considered in this study. This study focuses on the development of a method to evaluate the realistic design water levels in tidal river with taking into account the combined effects of river discharge and tidal level. The flood water levels are described by the joint probability of two driving forces, river discharge and tidal water levels. The developed method is applied to determine design water levels for the tidal reach of the Han River. An unsteady flow model is used to simulate the flow in the reach. To determine design water levels associated with a certain flood event, first, possible boundary conditions are obtained by sampling starting times of tidal level time series; then for each tidal boundary condition, corresponding peak water levels along the channel are computed; and finally, design water levels are determined by computing the expectations of the peak water levels. Two types of tides which are composed by different constituents are assumed (one is composed by $M_2$, and the other one is composed by $M_2$ and $M_2$) at downstream boundary, and two flood events with different maximum flood discharges are considered in this study. It is found that (a) the computed design water levels with two assumed tides have no significant difference for a certain flood event, though variability of peak water levels due to the tidal effect is considerably different; (b) tidal effect can reach to the Jamsil submerged weir and the effect is obvious in the downstream reach of the Singok submerged weir; (c) in the tidally affected reach, the variability of peak water levels due to the tidal effect is greater if the maximum flood discharge is smaller.

  • PDF

Estimation of Flood Discharge and Forecasting of Flood Stage in Small-Medium Urban Basin (중소도시유역의 홍수량산정 및 홍수위 예측)

  • Kim, min-jeong;Kim, byeong-chan;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.432-436
    • /
    • 2009
  • Recently, damage of flood is increased because of a short of time of concentration by development and a rise in runoff discharge by frequently heavy rain. The increase of runoff discharge is resulted in not only rise of water level but also damage of lives and property around river. Therefore, it is should be the first to estimate the exact runoff discharge. And based on the estimated flood discharge, flood damage is prevented by estimating inundated area of flood. In this study, flood stage is forecasted using HEC-HMS and HEC-RAS for Namdae-stream. The peak discharges were determinated by probability rainfall with the return period. The peak discharges obtained from HEC-HMS were inputted boundary conditions for the channel routing. Flood stages were evaluated using HEC-RAS.

  • PDF

Estimation of Design Flood Discharge by Areal Ratio for Ungauged Basin (면적비를 적용한 미계측유역에서의 설계홍수량 산정방안)

  • Lee, Jiho;Park, Jaebeom;Song, Yangho;Jun, Hwandon;Lee, Jungho
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2017
  • In this study, We proposed a method to estimate the design flood by area ratio in an ungauged basin. For that, the discharge parameters was determined by calibration of observed data at the watershed outlet and then peak flow was estimated by area ratio. In order to verify suggested method, peak flow was compared the observed discharge of the small river basin and the design flood discharge of river implementation projects. The results were summarized as follows. As a result of comparing the discharge by the area ratio and observed discharge, the difference of peak flows were analysed 14 ~ 25%. When the discharge calculated with area ratio of small river was compared with the design flood discharge of river implementation projects, the relative error was analyzed to be less than 20%. It means that suggested method in this study is appropriate.

Flood Runoff Characteristics in Urbanized Basin (도시화 유역에서의 홍수 유출 특성)

  • 한국희;이길춘
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This study is runoff analysis of the recently urbanized San Bon basin. The relationships between peak discharge and total discharge were examined by applying the ILLUDAS runoff analysis model to the measured data. In urbanized streams, it is found that channel adjustment had the most significant effect on the increase of peak discharge. Significant increases in the peak discharge occurred as rainfall duration or return period increases 10% and 7~16% increases in peak discharge were observed when the roughness coefficient were 0.04 and 0.015, respectively. When the natural river channel with n=0.04 was converted into a sewerage system of n=0.015 the peak discharge was greatly increased by 51~158%, Generally, flood peak discharge was increased during heavy rain, but in the case of urbanized basin, river stage was reduced owing to an increase of flow velocity by the adjustment of drainage system.

  • PDF

Influence of the Peace-Dam Construction on the Flood Discharge and the Flood Stage of the Hwachun-Dam (화천댐의 홍수량 및 수위에 미치는 평화댐의 영향 분석)

  • 전병호;신현석;이재철;윤용남
    • Water for future
    • /
    • v.26 no.1
    • /
    • pp.93-101
    • /
    • 1993
  • Because of the Keumkangsan-Dam and the Peace-Dam constructed in recent years, it is expected that the peak flood discharge and the peak flood stage at the Hwachun-Dam site have been changed. In this study, two methods were used to simulate and compare the effects of the upstream dam construction on the change of the discharge and the stage. One is the storage function method widely used for the hydrological routing in this country. The other is the DWOPER (Dynamic Wave Operational Model) package developed by the U.S. NWS for the hydraulic routing. Flood routing simulations have been performed on four different scenarios:1) Before the construction of the Keumkangsan-Dam and the peace-Dam, 2) The exclusion of the Keumkangsan-Dam watershed (before the construction of the Peace-Dam), 3) The exclusion of the Keumkangsan-Dam watershed (after the construction of the Peace-Dam), 4) The exclusion of the Peace-Dam watershed. The results of the four test cases from the two methods show that the peak flood discharge and the peak flood stage at the Hwachun-Dam site are reduced due to the construction of the Peace-Dam. From these findings, it is suggested that the operational criteria for the optimal dam-operation of the hwachun-Dam need to be modified.

  • PDF

An Estimation of the Peak Flood Discharges Based on the Mean Daily Discharges during a Flood Event (홍수사상별 일평균유량 자료로부터의 참두홍수량 산정)

  • 원석연;윤용남
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 1993
  • In the present study the methods proposed by Fuller and Sangal were evaluated to estimate the peak flood discharge based on the mean daily discharges during a flood period. The total of 198 flood events observed at seven stage gauging stations in the Han River basin were analyzed. The result showed that the peak flood discharges estimated based on the mean daily flows have a relatively high correlation with the observed peak floods. Hence, a regionalized relation and method is proposed for a possible application to estimate the peak flood discharges at the stage gauging stations with no hourly flood stage data, but with the mean daily stages.

  • PDF