• Title/Summary/Keyword: peak current

Search Result 1,759, Processing Time 0.033 seconds

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

Capillary Electrophoretic Method for the Determination of (+)-Catechin, (-)-Epicatechin in Grape Seed Ethanol Extract (포도종실 에탄올 추출물에 함유된 (+)-카테킨, (-)-에피카테킨의 모세관 전기영동법에 의한 분석)

  • Choi, One-Kyun;Chung, Yang-Seop;Chung, Ha-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.513-518
    • /
    • 2005
  • Capillary electrophoresis (CE) method was developed to determine (+)-catechin and (-)-epicatechin contents in grape seed ethanol extract. CE separation was achieved using 100 mM phosphate and borate buffer at pH 6.0 as background electrolyte and fused silica capillary with 50 microns x 375 microns O.D. (effective length 20.0cm) maintained at $25^{\circ}C$. The applied voltage was 10kV, and detection was performed by DAD at 210 nm, Two catechins were well separated within 6 min with repeatability of <0.8% RSD for migration time and <2.0% RSD for peak area, and correlation coefficients higher than 0.994 were obtained from 58.0 to 174.0 mg/L with detection limit of 0.035 mg/L. Separated compounds were successfully determined. CE method was easy to handle and showed good reproducibility. CE method was compared with conventional coloring and HPLC methods, and main advantages of CE method were low amount of sample required, simple pre-sample treatment, good recovery rate, and short analysis time.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

A Study on the Reasonable Personnel Management of Radiology Department -Centering around the General Hospitals in Seoul- (진단방사선과(診斷放射線科)의 적정인력(適正人力) 관리(管理)에 관(關)한 연구(硏究) -서울시내 종합병원(綜合病院) 중심(中心)으로-)

  • Chung, Soon-Kuy
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.27-64
    • /
    • 1988
  • Most hospital administrators in our country have doubted whether or not the size of their hospital personnel staffs, and the personnel management styles implemented are efficient or not. Actually, increased personnel expenditures due to sophisticated specialization of medical practices has become the biggest hospital expense. Therefore, it is said that hospitals can be run move efficiently by implementing reasonable management strategies for hospital personnel management. In this paper, the departments of diagnostic radiography in 16 general hospitals in Seoul, which were classified into 4 groups by the scale of hospital beds, were used as sample cases. Then, the data for the number of X-ray examination by diagnostic item was collected from sample hospitals. The unit hour spent on X-ray examinations in each diagnostic service was quoted from "A Study on setting-up of the relative value units of medical services and on the structure of current fee schedules" written by Mr. Ik Je Seong. The data analysis results are as follows; First, the number of hours per day spent on X-ray examinations in 13 hospitals out of 16 hospitals, was shorter than the general daily working hours (8 hours). Second, in the morning there was not enough time to work for X-ray examinations required, with the available manpower. In the afternoon, however, the situation was diametrically opposed to that in the morning. Third, in light of above results, though most hospitals employ sufficient personnel for the quantity of the actural work, they were always short-handed where their works were performed Fourth, this study tells us that there is a maldistribution of the work in the schedule : too much work for the available personnel in the morning. The following recommendations are resulted from the data analysis described above. First, it is recommended that all out-patients coming again, except specific patients(G. B. or I.V.P. etc) who have to have their X-ray examinations on an empty stomach in the morning among out-patients, be required to visit the hospital in the afternoon. Second, it is recommended that all new out-patients be required to make a reservation in order to equalize the number of patients throughout the day. Third, it is recommended that all in-patients, except specified patients, be arranged to have their X-ray examinations in the afternoon. Fourth, it is recommended that part time workers be employed during peak hours. This recommendation, if applied in a wider scale, would allow hospitals to overcome the problem of the maldistribution of work and personnel, and then more efficient hospital management through the appropirate personnel management procedures could be expected.

  • PDF

Modeling and analysis of selected organization for economic cooperation and development PKL-3 station blackout experiments using TRACE

  • Mukin, Roman;Clifford, Ivor;Zerkak, Omar;Ferroukhi, Hakim
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.356-367
    • /
    • 2018
  • A series of tests dedicated to station blackout (SBO) accident scenarios have been recently performed at the $Prim{\ddot{a}}rkreislauf-Versuchsanlage$ (primary coolant loop test facility; PKL) facility in the framework of the OECD/NEA PKL-3 project. These investigations address current safety issues related to beyond design basis accident transients with significant core heat up. This work presents a detailed analysis using the best estimate thermal-hydraulic code TRACE (v5.0 Patch4) of different SBO scenarios conducted at the PKL facility; failures of high- and low-pressure safety injection systems together with steam generator (SG) feedwater supply are considered, thus calling for adequate accident management actions and timely implementation of alternative emergency cooling procedures to prevent core meltdown. The presented analysis evaluates the capability of the applied TRACE model of the PKL facility to correctly capture the sequences of events in the different SBO scenarios, namely the SBO tests H2.1, H2.2 run 1 and H2.2 run 2, including symmetric or asymmetric secondary side depressurization, primary side depressurization, accumulator (ACC) injection in the cold legs and secondary side feeding with mobile pump and/or primary side emergency core coolant injection from the fuel pool cooling pump. This study is focused specifically on the prediction of the core exit temperature, which drives the execution of the most relevant accident management actions. This work presents, in particular, the key improvements made to the TRACE model that helped to improve the code predictions, including the modeling of dynamical heat losses, the nodalization of SGs' heat exchanger tubes and the ACCs. Another relevant aspect of this work is to evaluate how well the model simulations of the three different scenarios qualitatively and quantitatively capture the trends and results exhibited by the actual experiments. For instance, how the number of SGs considered for secondary side depressurization affects the heat transfer from primary side; how the discharge capacity of the pressurizer relief valve affects the dynamics of the transient; how ACC initial pressure and nitrogen release affect the grace time between ACC injection and subsequent core heat up; and how well the alternative feeding modes of the secondary and/or primary side with mobile injection pumps affect core quenching and ensure stable long-term core cooling under controlled boiling conditions.

High-k ZrO2 Enhanced Localized Surface Plasmon Resonance for Application to Thin Film Silicon Solar Cells

  • Li, Hua-Min;Zang, Gang;Yang, Cheng;Lim, Yeong-Dae;Shen, Tian-Zi;Yoo, Won-Jong;Park, Young-Jun;Lim, Jong-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.276-276
    • /
    • 2010
  • Localized surface plasmon resonance (LSPR) has been explored recently as a promising approach to increase energy conversion efficiency in photovoltaic devices, particularly for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. The LSPR is frequently excited via an electromagnetic (EM) radiation in proximate metallic nanostructures and its primary con sequences are selective photon extinction and local EM enhancement which gives rise to improved photogeneration of electron-hole (e-h) pairs, and consequently increases photocurrent. In this work, high-dielectric-constant (k) $ZrO_2$ (refractive index n=2.22, dielectric constant $\varepsilon=4.93$ at the wavelength of 550 nm) is proposed as spacing layer to enhance the LSPR for application to the thin film silicon solar cells. Compared to excitation of the LSPR using $SiO_2$ (n=1.46, $\varepsilon=2.13$ at the wavelength of 546.1 nm) spacing layer with Au nanoparticles of the radius of 45nm, that using $ZrO_2$ dielectric shows the advantages of(i) ~2.5 times greater polarizability, (ii) ~3.5 times larger scattering cross-section and ~1.5 times larger absorption cross-section, (iii) 4.5% higher transmission coefficient of the same thickness and (iv) 7.8% greater transmitted electric filed intensity at the same depth. All those results are calculated by Mie theory and Fresnel equations, and simulated by finite-difference time-domain (FDTD) calculations with proper boundary conditions. Red-shifting of the LSPR wavelength using high-k $ZrO_2$ dielectric is also observed according to location of the peak and this is consistent with the other's report. Finally, our experimental results show that variation of short-circuit current density ($J_{sc}$) of the LSPR enhanced a-Si:H solar cell by using the $ZrO_2$ spacing layer is 45.4% higher than that using the $SiO_2$ spacing layer, supporting our calculation and theory.

  • PDF

Natural Dyeing of Rayon Fabric using Loess (황토를 이용한 인견직물의 천연염색)

  • Jung, Yang-Sook;Bae, Do-Gyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.3
    • /
    • pp.193-199
    • /
    • 2013
  • This study dyed rayon fabric using loess as a natural colorant. To obtain the optimal dyeing conditions, various dyeing conditions were examined (temperature, pH, time, and concentration). The color fastness was evaluated using standard washing and rubbing fastness tests. The results were as follows: The loess powder particle size ranged from 0.4 to $1.7{\mu}m$ with a distribution range of 1.1 to $1.4{\mu}m$, representing a fine and uniform manufactured loess powder. The loess component analysis showed a large amount of silicon dioxide and aluminum oxide. TheFT-IR spectra showed that the ammonium group in the rayon fabric produced N-H banding at $1,540cm^{-1}$. The highest K/S value for the rayon fabric was obtained when the pH was 8.0, and this value increased rapidly with a longer dyeing time and when increasing the loess concentration to 30% (w/v). Pre-treatment with a soybean solution produced the highest K/S value for the rayon fabric with a loess concentration of 30% (w/v). The SEM analysis showed a higher amount of loess adhered to the rayon fabric surface when increasing the loess concentration. However, pre-treatment with a cationic agent and soybean solution resulted in a much higher attachment of loess to the fabric surface. Thus, the experimental results showed that using a cationized fabric and pre-treatment with a soybean solution are more effective when dyeing rayon fabric with loess than when using only loess.

  • PDF

Isolation and Identification of Degradation products of Herbicide Propanil in Solution (제초제(除草劑) Propanil의 용액중(溶液中) 분해산물(分解産物)의 분리(分離) 및 동정(同定))

  • Kim, Jang Eok;Shin, Yun Gyo;Hong, Jong Uck
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.27-32
    • /
    • 1987
  • To isolate and identify degradation products of propanil in solution which propanil concentration was 2000ppm with a certain temperature, degradation products and pathway were investigated every 2 weeks for 12 weeks. Extracted mixture was developed with benzene on TLC plate, and Rf values of isolated DCA and TCAB were 0.65 and 0.94 respectively. At the GC analysis, propanil and its degradation products could seperate at the column temperature $200^{\circ}C$, but in order to more good resolution, the column temperature of DCA and TCAB was $140^{\circ}C$ and $250^{\circ}C$ respectively. Functional group of OCA was determined by IR spectrum $3400cm^{-1}$ and $800cm^{-1}$. Proton peaks of OCA were NMR spectrum $6.7{\delta}$ and $3.7{\delta}$. As the results, the major degradation products of propanil in solution were seperated on TLC plate, and thus identified by the analysis of GC, IR and NMR. Proposed degradation pathway of propanil in solution was from DCA to TCAB.

  • PDF

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.