DOI QR코드

DOI QR Code

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery


Abstract

The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.

Keywords

References

  1. Solid State Ionics v.69 Brandt, K.
  2. JEC Battery Newsletter v.2 Nagaura, T.
  3. J. Electrochem. Soc. v.139 Reimer, J. N.;Dahn, J. R.
  4. Mat. Res. Bull. v.27 Gummow, R. J.;Thackeray, M. M.;David, W. I. F.;Hull, S.
  5. J. Electrochem. Soc. v.141 Ozuku, T.;Ueda, A.
  6. Electrochim. Acta v.38 Ohzuku, T.;Ueda, A.;Nagayama, M.;Yasunou, Y.;Komori, H.
  7. J. Electrochem. Soc. v.136 Plichta, E.;Slane, S.;Uchiyama, M.;Solomon, M.;Chua, D.;Ebner, W. B.;Lin, H. W.
  8. J. Electrochem. Soc. v.140 Antaya, M.;Dahn, J. R.;Preston, J. S.;Rossen, E.;Reimers, J. N.
  9. J. Electrochem. Soc. v.142 Uchida, I.;Sato, H.
  10. Denki Kagaku v.61 Ogihara, T.;Yanagawa, T.;Ogata, N.;Yoshida, K.;Mizuno, Y.;Yonezawa, S.;Takashima, M.;Nagata, N.;Ogawa, K.
  11. J. Power Source v.40 Yoshio, M.;Tanaka, H.;Tominaga, K.;Naguchi, H.
  12. J. Power Sources v.54 Garcia, B.;Farcy, J.;Pereira-Ramos, J. P.;Perichon, J.;Baffier, N.
  13. J. Power Sources v.54 Yazami, R.;Lebrun, N.;Bonneau, M.;Molteni, M.
  14. J. Power Sources v.54 Chang, S. W.;Lee, T. J.;Lin, S. C.;Jeng, J. H.
  15. J. Power Sources v.70 Jeong, E. D.;Won, M. S.;Shim, Y. B.
  16. Bull Korean Chem. Soc. v.19 Cho, P. J.;Jeong, E. D.;Shim, Y. B.
  17. J. Solid State Chem. v.94 Barboux, P.;Tarascon, J. M.;Shokoohi, F. K.
  18. J. Elecrochem. Soc. v.141 Hwang, H.;Bruce, P. G.
  19. J. Solid State Chem. v.88 Bach, S.;Henry, M.;Barrier, N.;Civage, J.
  20. Electrochim. Acta v.41 Pyun, S. I.;Bae, J. S.
  21. J. Power Sources v.56 Choi, Y. M.;Pyun, S. I.;Bae, J. S.;Moon, S. I.
  22. J. Appl. Electrochem. v.23 Cabanel, R.;Barral, G.;Diard, J. P.;Le Gorrec, B.;Montella, C.
  23. J. Electrochem. Soc. v.132 Thomas, M. G. S. R.;Bruce, P. G.;Goodennough, J. B.
  24. Solid State Ionics v.17 Thomas, M. G. S. R.;Bruce, P. G.;Goodennough, J. B.
  25. J. Electrochem. Soc. v.142 Pistoia, G.;Zane, D.;Zhang, Y.
  26. $The 36^{th} Battery Symposium in Japan$ Nishima, T.;Sato, H.

Cited by

  1. Malonic acid-assisted synthesis of LiNi0.8Co0.2O2 cathode active material for lithium-ion batteries vol.8, pp.5, 2002, https://doi.org/10.1007/bf02376048
  2. PMMA 구를 주형으로 이용한 3DOM 전극 구조체의 제조 vol.14, pp.8, 2000, https://doi.org/10.3740/mrsk.2004.14.8.587
  3. Structural and electrochemical characterization of polyaniline/LiCoO2 nanocomposites prepared via a Pickering emulsion vol.17, pp.5, 2013, https://doi.org/10.1007/s10008-013-2014-6
  4. Probing Order Phenomena and Interactions in Molten Salt Binary Mixtures with Impedance Spectroscopy and Cyclic Voltammetry vol.163, pp.6, 2016, https://doi.org/10.1149/2.0121606jes