• Title/Summary/Keyword: patterned substrate

Search Result 312, Processing Time 0.028 seconds

A Study on Optical Seemless of Discrete LED panels with Focusing Effect of prism Structure (프리즘 구조의 집광효과를 이용한 이산형 LED 패널의 광학적 연속성 구현에 관한 연구)

  • Cho, Sung-Hwan;Kim, Eung-Bo;Choi, Won-Seok;Joung, Yeun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.11-14
    • /
    • 2017
  • In this paper, we introduce a method of light focusing effect using prism structure to solve optical discontinuity of conventional external signage LED panels. The prims structures were patterned on a transparent polycarbonate substrate with MEMS and femto-second laser process. We have confirmed that the patterned prism structures on the substrate made artificial LED lights on empty space between the panels by light guide effect of the structure. The artificial light's lateral positions were controlled by thickness of polycarbonate substrate. This cost effective prim patterned transparent film can be utilized on digital signage LED panels to achieve good optical communication.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

Replication of High Density Patterned Media (고밀도 패턴드 미디어 성형에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.192-196
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. The nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. In nano-injection molding process, since the solidified layer, generated during the polymer filling, deteriorates transcribability of nano patterns by preventing the polymer melt from filling the nano cavities, an injection-mold system was constructed to actively control the stamper surface temperature using MEMS heater and sensors. The replicated polymeric patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth. The replicated polymeric patterns can be applied to high density patterned media.

  • PDF

Electrical properties of Organic TFT patterned by shadow-mask with all layer

  • Lee, Joo-Won;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.543-544
    • /
    • 2006
  • Pentacene thin film transistors fabricated without photolithographic patterning were fabricated on the plastic substrates. Both the organic/inorganic thin films and metallic electrode were patterned by shifting the position of the shadow mask which accompanies the substrate throughout the deposition process. By using an optically transparent zirconium oxide ($ZrO_2$) as a gate insulator and octadecyltrimethoxysilane (OTMS) as an organic molecule for self-assembled monolayer (SAM) to increase the adhesion between the plastic substrate and gate insulator and the mobility with surface treatment, high-performance transistor with field effect mobility $.66\;cm^2$/V s and $I_{on}/I_{off}$>$10^5$ was formed on the plastic substrate. This technique will be applicable to all structure deposited at low temperature and suitable for an easy process for flexible display.

  • PDF

Substrate-Assembling Technique using Adhesive Patterned Spacers for Flexible Liquid Crystal Displays

  • Kang, Jae-Hyun;Bae, Kwang-Soo;Yi, Seung-Woo;Kim, Jae-Hoon;Yu, Chang-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.218-220
    • /
    • 2009
  • We proposed an enhanced substrate-assembling technique using adhesive patterned spacers for flexible liquid crystal displays (LCDs). The negative photoresister was used for the rigid columnar spacers and the strong substrate-bonding agent. The proposed technique is expected to be a good candidate for manufacturing method of flexible LCDs.

  • PDF

AgNW-based functional polymer cantilever to improve maturity and contractility of cardiomyocytes (심근세포 성숙도 및 수축력 향상을 위한 AgNW 기반의 기능성 폴리머 캔틸레버)

  • Jeung, Min-young;Sim, Yu-ri;Yun, Ha-young;Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.185-189
    • /
    • 2021
  • Herein, we propose a functional polymer cantilever to enhance maturation and contractile force of cardiomyocytes. The proposed cantilever consists of a surface-patterned polymer substrate and silver nanowires (AgNWs). The AgNWs are transferred to the PDMS substrate using conventional molding techniques. This thin metallic surface significantly improves the adhesion of cardiomyocyte on the surface-patterned PDMS with the hydrophobic characteristics. In addition, the use of AgNWs improves the visibility of the conducting PDMS substrate for the observation of cardiomyocyte through an inverted microscope. The AgNWs also assist in synchronizing each cardiomyocyte to maximize its contractile force.

Polyelectrolyte Micropatterning Using Agarose Plane Stamp and a Substrate Having Microscale Features on Its Surface

  • Lee, Min-Jung;Lee, Nae-Yoon;Lee, Sang-Kil;Park, Sung-Su;Kim, Youn-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1539-1542
    • /
    • 2005
  • We have introduced polyelectrolyte micro-patterning technique employing agarose plane stamp and a hard substrate having microscale features on its surface. With this method, chemically micropatterned surfaces with both positive and negative functionalities were successfully embedded in well-defined microstructures, and selective impartment of charge functionalities was confirmed by patterning bead bearing surface charge. Furthermore, this technique allows highly sensitive immobilization of protein onto targeted surface simply by endowing functionalities, which extends the potential of its use as a tool for high-throughput protein microarray and proteomics. Because plane agarose stamp is free of structures on its surface, there is no concern for pattern collapse, and the combination of agarose plane stamp with patterned substrate is more suited for selective protein patterning compared with adopting surface-patterned agarose stamp with flat substrate. Our technique using agarose plane stamp and a substrate having microscale features on its surface suggests a range of possible applications, including the micropatterning of biofunctionalized copolymer having polyelectrolyte block, immobilization of micro- and nanoparticle with biofunctionalities such as biotin and streptavidine, and establishing optoelectronic microstructures with micro-beads on various surfaces.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.624-627
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by I-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50nm in diameter, 150nm in pitch, and 50nm in depth.

Numerical Simulations of the Light-Extraction Efficiency of LEDs on Sapphire Substrates Patterned with Various Polygonal Pyramids

  • Cui, Hao;Park, Si-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.772-776
    • /
    • 2014
  • We report a numerical analysis of the light-extraction efficiency (LEE) of light-emitting diodes (LEDs) on patterned sapphire substrates (PSSs). We considered various n-sided, regular convex pyramids, where n is an integer and $n{\geq}3$. We then considered four cross sections: extruded, subtracted, truncated-extruded, and truncated-subtracted. Ray-tracing simulations were carried out with these polygonal pyramid patterns, and the dimensions of the patterns were systematically varied. Optimized pattern shapes were determined for large LEE. An extruded circular pyramid with a slant angle of $45^{\circ}$ was found to be the optimal patterned shape.

Replication of Patterned Media Using Nano-injection Molding Process (패턴드 미디어를 위한 나노 사출 성형 공정에 관한 연구)

  • Lee, Nam-Seok;Choi, Yong;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.60-63
    • /
    • 2005
  • In this paper, we investigated the possibility of replicating patterned media by nano-injection molding process with a metallic nano-stamper. The original nano-master was fabricated by E-beam lithography and ICP etching process. The metallic nano-stamper was fabricated using a nanoimprint lithography and nano-electroforming process. Finally, the nano-patterned substrate was replicated using a nano-injection molding process without additional etching process. The replicated patterns using nano-injection molding process were as small as 50 nm in diameter, 150 nm in pitch, and 50 nm in depth.

  • PDF