DOI QR코드

DOI QR Code

AgNW-based functional polymer cantilever to improve maturity and contractility of cardiomyocytes

심근세포 성숙도 및 수축력 향상을 위한 AgNW 기반의 기능성 폴리머 캔틸레버

  • Jeung, Min-young (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Sim, Yu-ri (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Yun, Ha-young (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Kim, Dong-Su (Graduate School of Mechanical Engineering, Chonnam National University) ;
  • Lee, Dong-Weon (Graduate School of Mechanical Engineering, Chonnam National University)
  • 정민영 (전남대학교 기계공학과) ;
  • 심유리 (전남대학교 기계공학과) ;
  • 윤하영 (전남대학교 기계공학과) ;
  • 김동수 (전남대학교 기계공학과) ;
  • 이동원 (전남대학교 기계공학과)
  • Received : 2021.05.15
  • Accepted : 2021.05.30
  • Published : 2021.05.31

Abstract

Herein, we propose a functional polymer cantilever to enhance maturation and contractile force of cardiomyocytes. The proposed cantilever consists of a surface-patterned polymer substrate and silver nanowires (AgNWs). The AgNWs are transferred to the PDMS substrate using conventional molding techniques. This thin metallic surface significantly improves the adhesion of cardiomyocyte on the surface-patterned PDMS with the hydrophobic characteristics. In addition, the use of AgNWs improves the visibility of the conducting PDMS substrate for the observation of cardiomyocyte through an inverted microscope. The AgNWs also assist in synchronizing each cardiomyocyte to maximize its contractile force.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2017R1E1A1A01074550)

References

  1. S. M. Paul, D. S. Mytelka, C. T. Dunwiddie, C. C. Persinger, B. H. Munos, S. R. Lindborg, and A. L. Schacht, "How to improve R&D productivity: the pharmaceutical industry's grand challenge", Nat. Rev. Drug Discov., Vol. 9, No. 3, pp. 203-214, 2010. https://doi.org/10.1038/nrd3078
  2. W. G. Members, T. Thom, N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z. J. Zheng, K. Flegal, and C. O'Donnell, "Heart disease and stroke statistics-2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee", Circulation, Vol. 113, No. 6, pp. e85-e151, 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.171600
  3. D. S. Yu, D. T. Lee, J. Woo, "Health-related quality of life in elderly Chinese patients with heart failure", Res Nurs Health, Vol. 27, No. 5, pp. 332-344, 2004. https://doi.org/10.1002/nur.20030
  4. E. A. Woodcock, S. J. Matkovich, "Cardiomyocytes structure, function and associated pathologies", Int. J. Biochem. Cell Biol., Vol. 37, No. 9, pp. 1746-1751, 2005. https://doi.org/10.1016/j.biocel.2005.04.011
  5. A. Agarwal, J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker, "Microfluidic heart on a chip for higher throughput pharmacological studies", Lab Chip, Vol. 13, No. 18, pp. 3599-3608, 2013. https://doi.org/10.1039/c3lc50350j
  6. A. Sharma, W. L. McKeithan, R. Serrano, T. Kitani, P. W. Burridge, J. C. Del Alamo, M. Mercola, and J. C. Wu, "Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity", Nat. Protoc, Vol. 13, No. 12, pp. 3018-3041, 2018. https://doi.org/10.1038/s41596-018-0076-8
  7. Y. Zhao, S. Inayat, D. Dikin, J. Singer, R. Ruoff, and J. B. Troy, "Patch clamp technique: review of the current state of the art and potential contributions from nanoengineering, Proceedings of the Institution of Mechanical Engineers", Proc. Inst. Mech. Eng., Part N, Vol. 222, No. 1, pp. 1-11, 2008. https://doi.org/10.1243/17403499jnn149
  8. J. Cools, Q. Jin, E. Yoon, D. Alba Burbano, Z. Luo, D. Cuypers, G. Callewaert, D. Braeken, and D. H. Gracias, "A micropatterned multielectrode shell for 3D spatiotemporal recording from live cells", Adv. Sci., Vol. 5, No. 4, pp. 1700731(1)-1700731(7), 2018. https://doi.org/10.1002/advs.201700731
  9. A. W. Feinberg, A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker, "Muscular thin films for building actuators and powering devices", Science, Vol. 317, No. 5843, pp. 1366-1370, 2007. https://doi.org/10.1126/science.1146885
  10. D. S. Kim, Y. J. Jeong, B. K. Lee, A. Shanmugasundaram, and D. W. Lee, "Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes", Sens. Actuators, B, Vol. 240, pp. 566-572, 2017. https://doi.org/10.1016/j.snb.2016.08.167