• 제목/요약/키워드: pattern clustering

검색결과 545건 처리시간 0.038초

클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석 (Customer Load Pattern Analysis using Clustering Techniques)

  • 유승형;김홍석;오도은;노재구
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

패턴 클러스터링 기법에 기반한 배전 변전소 주변압기 사고복구 전략 설계 (Design of Main Transformer Fault Restoration Strategy Based on Pattern Clustering Method in Automated Substation)

  • 고윤석
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권10호
    • /
    • pp.410-417
    • /
    • 2006
  • Generally, the training set of maximum $m{\times}L(m+f)$ patterns in the pattern recognition method is required for the real-time bus reconfiguration strategy when a main transformer fault occurs in the distribution substation. Accordingly, to make the application of pattern recognition method possible, the size of the training set must be reduced as efficient level. This Paper proposes a methodology which obtains the minimized training set by applying the pattern clustering method to load patterns of the main transformers and feeders during selected period and to obtain bus reconfiguration strategy based on it. The MaxMin distance clustering algorithm is adopted as the pattern clustering method. The proposed method reduces greatly the number of load patterns to be trained and obtain the satisfactory pattern matching success rate because that it generates the typical pattern clusters by appling the pattern clustering method to load patterns of the main transformers and feeders during selected period. The proposed strategy is designed and implemented in Visual C++ MFC. Finally, availability and accuracy of the proposed methodology and the design is verified from diversity simulation reviews for typical distribution substation.

A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns

  • Kim Gui-Jung;Han Jung-Soo
    • International Journal of Contents
    • /
    • 제2권3호
    • /
    • pp.11-17
    • /
    • 2006
  • The Clustering is representative method of components classification. The previous clustering methods that use cohesion and coupling cannot be effective because design pattern has focused on relation between classes. In this paper, we classified design patterns with features of object-oriented relationship. The result is that classification by clustering showed higher precision than classification by facet. It is effective that design patterns are classified by automatic clustering algorithm. When patterns are retrieved in classification of design patterns, we can use to compare them because similar pattern is saved to same category. Also we can manage repository efficiently because of storing patterns with link information.

  • PDF

Customer Behavior Pattern Discovery by Adaptive Clustering Based on Swarm Intelligence

  • Dai, Weihui
    • Journal of Information Technology Applications and Management
    • /
    • 제17권1호
    • /
    • pp.127-139
    • /
    • 2010
  • Customer behavior pattern discovery is the fundament for conducting customer oriented services and the services management. But, the composition, need, interest and experience of customers may be continuously changing, thereof lead to the difficulty in refining a stable description of their consistent behavior pattern. This paper presented a new method for the behavior pattern discovery from a changing collection of customers. It was originally inspired from the swarm intelligence of ant colony. By the adaptive clustering, some typical behavior patterns which reflect the characteristics of related customer clusters can extracted dynamically and adaptively.

  • PDF

협업적 여과 시스템의 성능 향상을 위한 장르 패턴 기반 사용자 클러스터링 (GGenre Pattern based User Clustering for Performance Improvement of Collaborative Filtering System)

  • 최자현;하인애;홍명덕;조근식
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권11호
    • /
    • pp.17-24
    • /
    • 2011
  • 협업적 여과 시스템은 사용자에 대한 클러스터링을 구축한 후, 구축된 클러스터를 기반으로 사용자에게 아이템을 추천한다. 그러나 사용자 클러스터링 구축에 많은 시간이 소요되고, 사용자가 평가한 아이템이 피드백 되었을 경우 재구축이 쉽지 않다. 본 논문에서는 영화 추천 시스템에서의 사용자 클러스터링의 재구축 시간을 단축시키기 위해서 빈발 패턴 네트워크를 이용하여 사용자가 선호하는 장르 패턴을 추출하고, 추출된 패턴을 통해 사용자 클러스터링을 구축한다. 구축된 사용자 클러스터링을 협업적 여과에 적용하여 사용자에게 영화를 추천한다. 사용자 정보가 피드백 될 때, 전통적 협업적 여과는 사용자 클러스터링을 재구축하기 위해 모든 이웃 사용자를 재탐색하여 클러스터링 한다. 하지만 빈발 패턴 네트워크를 이용하여 장르 패턴 기반의 사용자 클러스터링을 적용한 협업적 여과는 사용자 클러스터링을 재구축시 사용자 탐색 공간을 국한시킴으로써 탐색 시간을 줄일 수 있다. 제안하는 장르 패턴기반의 사용자 클러스터링을 통해 사용자 정보가 피드백 된 후 사용자 클러스터를 재구축시 소요되는 시간을 줄일 수 있고, 전통적인 협업적 여과 시스템과 유사한 성능의 추천이 가능하게 되었다.

A Fusion of Data Mining Techniques for Predicting Movement of Mobile Users

  • Duong, Thuy Van T.;Tran, Dinh Que
    • Journal of Communications and Networks
    • /
    • 제17권6호
    • /
    • pp.568-581
    • /
    • 2015
  • Predicting locations of users with portable devices such as IP phones, smart-phones, iPads and iPods in public wireless local area networks (WLANs) plays a crucial role in location management and network resource allocation. Many techniques in machine learning and data mining, such as sequential pattern mining and clustering, have been widely used. However, these approaches have two deficiencies. First, because they are based on profiles of individual mobility behaviors, a sequential pattern technique may fail to predict new users or users with movement on novel paths. Second, using similar mobility behaviors in a cluster for predicting the movement of users may cause significant degradation in accuracy owing to indistinguishable regular movement and random movement. In this paper, we propose a novel fusion technique that utilizes mobility rules discovered from multiple similar users by combining clustering and sequential pattern mining. The proposed technique with two algorithms, named the clustering-based-sequential-pattern-mining (CSPM) and sequential-pattern-mining-based-clustering (SPMC), can deal with the lack of information in a personal profile and avoid some noise due to random movements by users. Experimental results show that our approach outperforms existing approaches in terms of efficiency and prediction accuracy.

Mobile User Interface Pattern Clustering Using Improved Semi-Supervised Kernel Fuzzy Clustering Method

  • Jia, Wei;Hua, Qingyi;Zhang, Minjun;Chen, Rui;Ji, Xiang;Wang, Bo
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.986-1016
    • /
    • 2019
  • Mobile user interface pattern (MUIP) is a kind of structured representation of interaction design knowledge. Several studies have suggested that MUIPs are a proven solution for recurring mobile interface design problems. To facilitate MUIP selection, an effective clustering method is required to discover hidden knowledge of pattern data set. In this paper, we employ the semi-supervised kernel fuzzy c-means clustering (SSKFCM) method to cluster MUIP data. In order to improve the performance of clustering, clustering parameters are optimized by utilizing the global optimization capability of particle swarm optimization (PSO) algorithm. Since the PSO algorithm is easily trapped in local optima, a novel PSO algorithm is presented in this paper. It combines an improved intuitionistic fuzzy entropy measure and a new population search strategy to enhance the population search capability and accelerate the convergence speed. Experimental results show the effectiveness and superiority of the proposed clustering method.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계 (A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns)

  • 김동연;김진일
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.319-326
    • /
    • 2002
  • 본 논문에서는 위성영상을 처리하기 위한 무감독분류 기법인 군집분류 시스템을 설계하고 구현하였다. 구현된 시스템은 새로운 위성영상 포맷과 군집분류 기법의 지원이 용이하고, 확장성 있는 시스템의 설계를 위하여 팩토리 패턴과 전략적 패턴 등 다양한 디자인 패턴을 적용하였다. 군집분류 시스템은 순차군집분류 기법, K-Means 군집분류 기법, ISODATA 기법, Fuzzy C-Means군집분류 기법을 설계, 구현하였으며 Landsat TM 위성영상을 분류기의 입력영상으로 실험하였다. 그 결과 군집분류 기법은 사전지식이 없는 위성영상의 분류를 위한 표본영역의 추출작업과 위성영상의 실시간 분류에 효과적인 사용이 가능함을 보였으며, 재사용성 및 확장성이 우수한 시스템을 개발하였다.

Twostep Clustering of Environmental Indicator Survey Data

  • Park, Hee-Chang
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.59-69
    • /
    • 2005
  • Data mining technique is used to find hidden knowledge by massive data, unexpectedly pattern, relation to new rule. The methods of data mining are decision tree, association rules, clustering, neural network and so on. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. It has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research on off-line or on-line and so on. We analyze Gyeongnam social indicator survey data by 2001 using twostep clustering technique for environment information. The twostep clustering is classified as a partitional clustering method. We can apply these twostep clustering outputs to environmental preservation and improvement.

  • PDF