• Title/Summary/Keyword: path-dependent

Search Result 373, Processing Time 0.023 seconds

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Failure Path of the Brown-oxide-coated Copper-based Leadframe/EMC Interface under Mixed-Mode Loading (혼합하중 조건하에서 갈색산화물이 입혀진 구리계 리드프레임/EMC 계면의 파손경로)

  • 이호영
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.491-499
    • /
    • 2003
  • Copper-based leadframe sheets were oxidized in a hot alkaline solution to form brown-oxide layer on the surface and molded with epoxy molding compound (EMC). The brown-oxide-coated leadframe/EMC joints were machined to form sandwiched double-cantilever beam (SDCB) specimens and sandwiched Brazil-nut (SBN) specimens for the purpose of measuring the fracture toughness of leadframe/EMC interfaces. The SDCB and the SBN specimens were designed to measure the fracture toughness of the leadframe/EMC interfaces under nearly mode-I loading and mixed-mode (mode I + mode II) loading conditions, respectively. Fracture surfaces were analyzed by various equipment such as glancing-angle XRD, SEM, AES, EDS and AFM to elucidate failure path. Results showed that failure occurred irregularly in the SDCB specimens, and oxidation time of 2 minutes divided the types of irregular failures into two classes. The failure in the SBN specimens was quite different from that in the SDCB specimens. The failure path in the SBN specimens was not dependent on the phase angle as well as the distance from tips of pre-cracks.

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Theoretical Studies on the Competitive Sn2 Reactions of O-Imidomethyl Derivatives of Phenols with OH-

  • Kim, Chang Gon;Jeong, Dong Su;Kim, Chan Gyeong;Lee, Bon Su;Jeong, Yeong Jin;Lee, Byeong Jun;Lee, Ik Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.25-29
    • /
    • 2001
  • Nucleophilic substitution reactions of O-imidomethyl derivatives of phenols with OH- were studied theoretically using the semiempirical AM1 and Solvation Model 2.1 (SM2.1) methods in the gas phase and aqueous solution, respectively. In the gas phase, the two reaction paths, in which the imide (1a) or phenol (1b) is functioning as a leaving group, can occur competitively. In contrast, in aqueous solution, path (1b) becomes more favorable than (1a) because the transition states (TS) of path (1b) are more stabilized by solvent. Differences in solvation energies are caused by the structural differences of TS, i.e., the TS via path (1b) is more dissociative than that via path (1a). Therefore we conclude that the solvent effects play an important role in the hydrolysis of O-imidomethyl derivatives of phenols. However, reactivity is dependent on the acidities of both the imide and the phenol fragments since the ρz values vary progressively from 4.2 (Z' = I) to 2.5 (Z' = IV) as the acidities of imide increase. These are in good agreement with the experimental results.

Temperature Dependence of the Vibration-Vibration Energy Transfer for HF(v = n) + $H_2$(v = 0) and DF(v = n) + $D_2$(v = 0)

  • Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 1992
  • Vibration-to-vibration energy transfer probabilities for $HF(v=n)+H_2(v=0){\to}HF(v=n-1)+H_2(v=1)$ and $DF(v=n)+D_2(v=0){\to}DF(v=n-1)+D_2(v=1)$ including both the vibration-to-vibration and translation (V-V, T) and vibration-to-vibration and rotation (V-V, R) energy transfer paths have been calculated semiclassically using a simplified collision model and Morse-type intermolecular interaction potential. The calculated results are in reasonably good agreement with those obtained by experimental studies. They also show that the transition processes for $HF(v=1-3)+H_2(v=0){\to}HF(v=0-2)+H_2(v=1)$ and $DF(v=1,\;4)+D_2(v=0){\to}DF(v=0,\;3)+D_2(v=1)$ are strongly dependent on the V-V, T path at low temperature but occur predominantly via the V-V, R path with rising temperature. The vibration-to-vibration energy transfer for $HF(v=4)+H_2(v=0){\to}HF(v=3)+H_2(v=1)$ and $DF(v=2-3)+D_2(v=0){\to}DF(v=1-2)+D_2(v=1)$ occur predominantly via V-V, R path and V-V, T path through whole temperatures, respectively.

A Workcase Mining Mechanism using Activity Dependency (액티비티 의존성을 이용한 워크케이스 마이닝 메커니즘)

  • Kim Sang-Bae;Kim Hak-Seong;Paik Su-Ki
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.43-55
    • /
    • 2003
  • Workflow mining is a newly emerging research issue for rediscovering and reengineering workflow models from workflow logs containing information about workflows being executed on the workflow engine. In this paper, we proposed workcase mining which was used dependency among activities. Main purpose of this paper is to minimize discrepancies between the modeled workflow process and the enacted workflow process as it is actually being executed. That is, we can get a complete set of activity firing sequences on buildtime. Besides, we can discover from workflow logs that which path out of all reachable paths a workcase has actually followed through on runtime. For this purpose we proposed two algorithm, the one is 'Activily-Dependent Net Algorithm' and the other is 'E-Walk Series Analysis Algorithm'.

  • PDF

A Causal Analysis on Factors Affecting Management Outcome of Cherry Tomato Farming in Chungnam Area (방울토마토 경영성과에 영향을 미치는 요인분석)

  • Lee, Kwang-Won;Kim, Jai-Hong
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.2
    • /
    • pp.151-167
    • /
    • 2005
  • In this study, certain factors influencing cherry tomato were estimated using system equations. In addition, the amount of influence to income from each factor was estimated from both direct and indirect effects. Based on OLS(Ordinary Least Squares) estimation, path analysis and factor analysis were employed to overcome multicollinearity problems. Data used in this study is interviewed cross sectional data of 65 cherry tomato producing farm in Chungnam-do area. Average age of the producers is 46.5. Average year of the production is 8 years. Average farm size, productivity, and income are 1,123 pyong, 7,439kg/10a, 8,112,000won/10a, respectively. The business performance of the sample farms were above average, in terms of the diagnosis by "Standard Business Diagnosis for Cherry tomato". To identify the factors influencing productivity, 15, 19, and 25 independent variables were selected for the dependent variables of yield, price(quality), and business cost, respectively. Finally, yield, quality, and business cost variables were set as independent variables to explain income as dependent variable. As a result of main factor analysis, 10, 12, 15, and 16 factors were identified as main factors for yield, quality, business cost, and income, respectively.

  • PDF

Swarm Intelligence Based Data Dependant Routing Algorithm for Ad hoc Network (군집단 지능 알고리즘 기반의 정보 속성을 고려한 애드 혹 네트워크 라우팅)

  • Heo, Seon-Hoe;Chang, Hyeong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.462-466
    • /
    • 2008
  • In this paper, we propose a Data Dependant Swarm Intelligence Routing Algorithm(DSRA) based on "ant colony optimization" to improve routing performance in Mobile Ad hoc Network(MANET). DSRA generates a different routing path depending on data's characteristics: Realtime and Non-Realtime. DSRA achieves a reduced delay for Realtime data and an enhanced network lifetime from a decentralized path selection for Non-Realtime data. We demonstrate these results by an experimental study comparing with AODV, DSR and AntHocNet.

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei;Wu, C.T.
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.237-255
    • /
    • 2013
  • In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Optimal cross-section and configuration design of cyclic loaded elastic-plastic structures

  • Valido, Anibal J.;Sousa, Luis G.;Cardoso, J. Barradas
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.25-35
    • /
    • 1996
  • This paper describes a continuum variational formulation for design optimization of nonlinear structures in the elastic-plastic domain, where unloading and reloading of the structures are allowed to occur. The Total Lagrangian procedure is used for the description of the structural deformation. The direct differentiation approach is used to derive the sensitivities of the various structural response measures with respect to the design parameters. Since the material goes into the inelastic range and unloading and reloading of the structure are allowed to occur, the structural response is path dependent and an additional step is needed to integrate the constitutive equations. It can be shown, consequently, that design sensitivity analysis is also path-dependent. The theory has been discretized by the finite element technique and implemented in a structural analysis code. Mathematical programming approach is used for the optimization process. Numerical applications on trusses are performed, where cross-sectional areas and nodal point coordinates are treated as design variables. Optimal designs have been obtained and compared by using two different strategies: a two level strategy where the levels are defined accordingly the type of design variables, cross sectional areas or node coordinates, and optimizing simultaneously with respect to both types of design variables.