• Title/Summary/Keyword: path tracking

Search Result 557, Processing Time 0.03 seconds

Path Tracking Controller Design and Simulation for Korean Lunar Lander Demonstrator

  • Yang, Sungwook;Son, Jongjun;Lee, Sangchul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.102-109
    • /
    • 2015
  • In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using performance measures such as the total impulse and the position error with respect to the desired path.

Development of Steering Control System for Autonomous Vehicle Using Geometry-Based Path Tracking Algorithm

  • Park, Myungwook;Lee, Sangwoo;Han, Wooyong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.617-625
    • /
    • 2015
  • In this paper, a steering control system for the path tracking of autonomous vehicles is described. The steering control system consists of a path tracker and primitive driver. The path tracker generates the desired steering angle by using the look-ahead distance, vehicle heading, and a lateral offset. A method for applying an autonomous vehicle to path tracking is an advanced pure pursuit method that can reduce cutting corners, which is a weakness of the pure pursuit method. The steering controller controls the steering actuator to follow the desired steering angle. A servo motor is installed to control the steering handle, and it can transmit the steering force using a belt and pulley. We designed a steering controller that is applied to a proportional integral differential controller. However, because of a dead band, the path tracking performance and stability of autonomous vehicles are reduced. To overcome the dead band, a dead band compensator was developed. As a result of the compensator, the path tracking performance and stability are improved.

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

A Study on the N-Path SC Tracking Filter using PLL (PLL을 이용한 N-Path SC추적여파기에 관한 연구)

  • Jung, Sung-Hwan;Son, Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.3
    • /
    • pp.83-90
    • /
    • 1983
  • N-path SC tracking filter is studied beyond the audio frequency range. First, the SC filter Cell which would determine total SC filter characteristics is analyzed by the two methods, charge equation method and difference equation method. Second, 4-path and 8-path SC filter are presented, including only capacitors and switches. Then, 4-path and 8-path SC tracking filter are constructed by conisting of SC filter block and PLL block. In this experiment, maximum response shift is confirmed. With respect to the capacitor ratios and the number of path, Q and Gain(dB) is considered. Also tracking range is measured.

  • PDF

Geometric Path Tracking and Obstacle Avoidance Methods for an Autonomous Navigation of Nonholonomic Mobile Robot (비홀로노믹 이동로봇의 자율주행을 위한 기하학적 경로 추종 및 장애물 회피 방법)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.771-779
    • /
    • 2010
  • This paper presents a method that integrates the geometric path tracking and the obstacle avoidance for nonholonomic mobile robot. The mobile robot follows the path by moving through the turning radius given from the pure pursuit method which is the one of the geometric path tracking methods. And the obstacle generates the obstacle potential, from this potential, the virtual force is obtained. Therefore, the turning radius for avoiding the obstacle is calculated by proportional to the virtual force. By integrating the turning radius for avoiding the obstacle and the turning radius for following the path, the mobile robot follows the path and avoids the obstacle simultaneously. The effectiveness of the proposed method is verified through the real experiments for path tracking only, static obstacle avoidance, dynamic obstacle avoidance.

Real-Time System Design and Point-to-Point Path Tracking for Real-Time Mobile Robot

  • Wang, F.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.162-167
    • /
    • 2003
  • In this paper, a novel feasible real-time system was researched for a differential driven wheeled autonomous mobile robot so that the mobile robot can move in a smooth, safe and elegant way. Least Square Minimum Path Planning was well used for the system to generate a smooth executable path for the mobile robot, and the point-to-point tracking algorithm was presented as well as its application in arbitrary path tracking. In order to make sure the robot can run elegantly and safely, trapezoidal speed was integrated into the point-to-point path tracking algorithm. The application to guest following for the autonomous mobile robot shows its wide application of the algorithm. The novel design was successfully proved to be feasible by our experiments on our mobile robot Interactive Robot Usher (IRU) in National University of Singapore.

  • PDF

Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm (개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적)

  • Park Jin-Hyun;Park Gi-Hyung;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.782-791
    • /
    • 2005
  • In this paper, path planning and tracking problems are mentioned to guarantee efficient and safe navigation of autonomous mobile robots. We focus on the path planning and also deal with the path tracking and obstacle avoidance. We improved the conventional distance transform (DT) algorithm for the path planning. Using the improved DT algorithm, we obtain paths with shorter distances compared to the conventional DT algorithm. In the stage of the Path tracking, we employ the fuzzy logic controller to conduct the path tracking behavior and obstacle avoidance behavior. Through computer simulation studies, we show the effectiveness of the Nosed navigational algorithm for autonomous mobile robots.

Path Planning and Tracking for Mobile Robots Using An Improved Distance Transform Algorithm (개선된 거리변환 알고리즘을 이용한 이동 로봇의 경로 계획 및 추적)

  • Park, Jin-Hyun;Park, Gi-Hyung;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.295-299
    • /
    • 2005
  • In this paper, path planning and tracking problems are mentioned to guarantee efficient and safe navigation of autonomous mobile robots. We focus on the path planning and also deal with the path tracking and obstacle avoidance. We improved the conventional distance transform (DT) algorithm for the path planning. Using the improved DT algorithm, we obtain paths with shorter distances compared to the conventional DT algorithm. In the stage of the path tracking, we employ the fuzzy logic controller to conduct the path tracking behavior and obstacle avoidance behavior. Through computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

  • PDF

Performance Evaluation of Safety Envelop Based Path Generation and Tracking Algorithm for Autonomous Vehicle (안전 영역 기반 자율주행 차량용 주행 경로 생성 및 추종 알고리즘 성능평가 연구)

  • Yoo, Jinsoo;Kang, Kyeongpyo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • This paper describes the tracking algorithm performance evaluation for autonomous vehicle using a safety envelope based path. As the level of autonomous vehicle technologies evolves along with the development of relevant supporting modules including sensors, more advanced methodologies for path generation and tracking are needed. A safety envelope zone, designated as the obstacle free regions between the roadway edges, would be introduced and refined for further application with more detailed specifications. In this paper, the performance of the path tracking algorithm based on the generated path would be evaluated under safety envelop environment. In this process, static obstacle map for safety envelope was created using Lidar based vehicle information such as current vehicle location, speed and yaw rate that were collected under various driving setups at Seoul National University roadways. A level of safety was evaluated through CarSim simulation based on paths generated with two different references: a safety envelope based path and a GPS data based one. A better performance was observed for tracking with the safety envelop based path than that with the GPS based one.

3-Dimensional Path Planning and Guidance for High Altitude Long Endurance UAV Including a Solar Power Model (태양광 전력모델을 포함한 장기체공 무인기의 3차원 경로계획 및 유도)

  • Oh, Su-hun;Kim, Kap-dong;Park, Jun-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • This paper introduces 3-dimensional path planning and guidance including power model for high altitude long endurance (HALE) UAV using solar energy. Dubins curve used in this paper has advantage of being directly available to apply path planning. However, most of the path planning problems using Dubins curve are defined in a two-dimensional plan. So, we used 3-dimensional Dubins path generation algorithm which was studied by Randal W. Beard. The aircraft model which used in this paper does not have an aileron. So we designed lateral controller by using a rudder. And then, we were conducted path tracking simulations by using a nonlinear path tracking algorithm. We generate examples according to altitude conditions. From the path tracking simulation results, we confirm that the path tracking is well on the flight path. Finally, we were modeling the power system of HALE UAVs and conducting path tracking simulation during 48hours. Modeling the amount of power generated by the solar cell through the calculation of the solar energy yield. And, we show the 48hours path tracking simulation results.