• Title/Summary/Keyword: path loss exponent

Search Result 30, Processing Time 0.024 seconds

Primary user localization using Bayesian compressive sensing and path-loss exponent estimation for cognitive radio networks

  • Anh, Hoang;Koo, Insoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2338-2356
    • /
    • 2013
  • In cognitive radio networks, acquiring the position information of the primary user is critical to the communication of the secondary user. Localization of primary users can help improve the efficiency with which the spectrum is reused, because the information can be used to avoid harmful interference to the network while simultaneity is exploited to improve the spectrum utilization. Despite its inherent inaccuracy, received signal strength based on range has been used as the standard tool for distance measurements in the location detection process. Most previous works have employed the path-loss propagation model with a fixed value of the path loss exponent. However, in actual environments, the path loss exponent for each channel is different. Moreover, due to the complexity of the radio channel, when the number of channel increases, a larger number of RSS measurements are needed, and this results in additional energy consumption. In this paper, to overcome this problem, we propose using the Bayesian compressive sensing method with a calibrated path loss exponent to improve the performance of the PU localization method.

Path Loss Characteristics in Subway Platform at 2.45GHz Band (2.45GHz 대역의 지하철 플랫폼에서 경로손실 특성)

  • 최낙일;공민한;강영진;송문규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.318-321
    • /
    • 2003
  • In this paper, path loss and delay profile characteristics are measured in the subway platform. To evaluate the fading characteristics of the measured signals, the standard deviations are computed. The standard deviation is bigger for shorter distance. The shorter the distance, the bigger the phase difference between direct wave and reflected waves according the distance, which results in heavy fading. To compute the path loss according to distance, the average values of path loss exponent(n) is evaluated. The path loss exponents measured in the subway environment for Omni-VP(omni-directional vertical polarization) antenna and CP(circular polarization) antenna are 1.418 and 1.680, respectively, which are considerably less than 2.0, the free space path loss exponent.

  • PDF

Path Loss Characteristics in Subway Tunnel at 2.65GHz (지하철 터널 환경에서 2.65GHz 대역신호의 경로손실 특성)

  • Jo, Han-Shin;Kim, Do-Youn;Yook, Jong-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10A
    • /
    • pp.1014-1019
    • /
    • 2006
  • The research deals with the measurement of electromagnetic wave propagation in subway tunnels at 2.65GHz. Measurements have been conducted in 4 different types of tunnel courses, a straight tunnel, two curved tunnels, with 245m and 500m radius of curvature, and a tunnel that has both straight and curved sections. we found that the path loss exponent for the line-of-sight(LOS) region inside all the tunnels is $1.31{\sim}2.19$. The path loss exponents for LOS regions in the tunnel is lower than $(3{\sim}4)$, which corresponds to the path loss exponent factor for outdoor cellular environments. The path loss exponents of the straight tunnel, two curved tunnels with 245m and 500m radius of curvature are 1.94, 2.92, and 4.34, respectively. This indicates that a smaller radius of curvature in tunnel results in a higher path loss exponent for nonline-of-sight(NLOS) region. The path loss exponents for the NLOS region in the combined and curved tunnel, which have the same radii of cuvature, are 5.88 and 4.34, respectively. Therefore, it can be concluded that the path loss characteristics in tunnel environments are infulenced by the radii of curvature as well as the LOS distance.

Measurements on the Propagation Path Loss Exponent at Maritime VHF Channel Using Single Carrier Signal (단일 반송파를 이용한 해상 VHF 채널의 전파 경로 감쇠 지수 측정)

  • Kim, Seung-Geun;Kim, Sea-Moon;Yun, Changho;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1450-1456
    • /
    • 2015
  • The received signal strengths according to the propagation distance between a transmitting shore station with a 53 m antenna hight and a receiving ship station with about 6m antenna hight from 700 m upto about 20 km are measured at ship's moving velocity of $5{\pm}1m/s$ using a single carrier signal at 150.0625MHz. In this paper, the path loss exponents at the propagation distance from 700 m to 20km are estimated via minimum-mean-square-error method using the measurements of the received signal strength, and the mean of the estimated path loss exponent become 3.79. The estimated propagation path loss exponents is similar to that calculated based on the field-strength values from 2 km to 20 km in Annex 2 of ITU-R P.1546-4, which is measuring results at maritime VHF at 100 MHz carrier frequency. Therefore, the estimated propagation path loss exponent shall be used as the expected path loss exponents for summer in costal area of South Sea of Korea.

Path Loss Exponent Estimation for Indoor Wireless Sensor Positioning

  • Lu, Yu-Sheng;Lai, Chin-Feng;Hu, Chia-Cheng;Huang, Yueh-Min;Ge, Xiao-Hu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2010
  • Rapid developments in wireless sensor networks have extended many applications, hence, many studies have developed wireless sensor network positioning systems for indoor environments. Among those systems, the Global Position System (GPS) is unsuitable for indoor environments due to Line-Of-Sight (LOS) limitations, while the wireless sensor network is more suitable, given its advantages of low cost, easy installation, and low energy consumption. Due to the complex settings of indoor environments and the high demands for precision, the implementation of an indoor positioning system is difficult to construct. This study adopts a low-cost positioning method that does not require additional hardware, and uses the received signal strength (RSS) values from the receiver node to estimate the distance between the test objects. Since many objects in indoor environments would attenuate the radio signals and cause errors in estimation distances, knowing the path loss exponent (PLE) in an environment is crucial. However, most studies preset a fixed PLE, and then substitute it into a radio propagation loss model to estimate the distance between the test points; such method would lead to serious errors. To address this problem, this study proposes a Path Loss Exponent Estimation Algorithm, which uses only four beacon nodes to construct a radio propagation loss model for an indoor environment, and is able to provide enhanced positioning precision, accurate positioning services, low cost, and high efficiency.

The Study on Empirical Propagation Path Loss in the Airport Cargo Terminal Environment (공항 화물터미널 환경에서 실험적인 패스 로스에 관한 연구)

  • Kim, Kyung-Tae;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1140-1147
    • /
    • 2013
  • In this paper, The path loss model of Air Traffic Control(ATC) telecommunication radio channel has been studied at the Incheon International Airport(IIA) Cargo Terminal. We measured one frequency among VHF channel bands. The transmitting site was located at different locations with different heights. The transmitting site radiated the Continuous Wave(CW). The propagation measurement was taken using the moving vehicle equipped with receiver and antenna. The transmitting power, frequency and antenna height are the same as the current operating condition. The path loss exponent and intercept parameters were extracted by the basic path loss model and hata model. The path loss exponent at IIA Cargo terminal area were 3.67 and 3.39 respectively in first and second transmitting sites. The deviation of prediction error is 14.42 and 10.38. The new path loss equation at the IIA Cargo terminal area was also developed using the derived path loss parameters. The new path loss was compared with other models. This result will be helpful for the ATC site selection and service quality evaluation.

Localization of primary user for cognitive radios based on estimation of path-loss exponent (인지무선시스템을 위한 전송 손실 지수 추정 기반의 기 사용자 위치 검출 기법)

  • Anh, Hoang;Koo, Insoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.55-63
    • /
    • 2013
  • In cognitive radio networks, acquirement of position information of primary user is very important to secondary network since localization information of primary users can be utilized for improving the spectrum efficiency of secondary network and for avoiding harmful interference to primary users by using proper power control. Among various location methods, Received Signal Strength (RSS)-based localization has been widely used for distance measurements in the location detection process despite its inherent inaccuracy because it can be easily implemented without any additional hardware cost. In the RSS-based localization, the distance is measured by the received signal strength, and distance error can be caused by many factors such as fading, shadowing and obstacle between two nodes. In the paper, therefore we propose a localization scheme based on estimation of path-loss exponent to localize the location of primary users more accurately. Through simulations, it is shown that the proposed scheme can provide less localization error and interference rate to primary users than other schemes.

Path Loss Characteristics of TETRA-based KTX Train Radio Propagation (TETRA 기반 고속철도 열차무선의 전파 경로손실 특성)

  • Bae, Sung-Ho;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2985-2991
    • /
    • 2013
  • Train radio system has been constructed in the second stage of Kyung-bu high speed railway adopting TETRA(Terrestial trunk radio) standard at 851MHz frequency band. The base stations of the train radio system should be located along railway track to ensure seamless communication between train and wayside taking the path loss of train radio propagation into consideration. This paper provides a quantitative analysis of the path loss characteristics based on the measurement results of the train radio propagation along the high speed railway. The free space propagation model and Okumura-Hata model are generally used for base station design, but they predicted 10dB lower or 20dB higher than the measured path loss. Linear regression of the field measured data by applying the log-distance model shows path loss exponent is in the 2.8-3.2 range, which can be used to predict the path loss of the train radio propagation.

A Comparison Study on the Path Loss Estimation in Censoring and Truncation Environments (센서링과 절단 환경에서의 경로 손실 추정 방법에 대한 비교 연구)

  • Lee, Kyung-gyu;Oh, Seong-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.323-330
    • /
    • 2017
  • The millimeter wave band is in the extremely high frequency band whose frequency and wavelength are 30-300GHz and 10-1mm respectively. When the obstacles block the propagation path which is not Line-of-Sight (LoS), due to a high propagation loss, it is hard to receive a signal in the millimeter wave band. Therefore When the path loss is measured in the millimeter wave band, the signal which is not distinguished from the noise is observed. Consequently, the path loss data which is limited in certain value is observed in the high propagation loss environment. If the original least square is implemented without taking the limitation of certain value into account, the path loss exponent may be underestimated. In this paper, the performance of Tobit Maximum Likelihood Estimation, Heckman Two-stage Model and Truncation Regression Model which can estimate properly in the censoring or truncated environments are compared.

Measurement and analysis of indoor corridor propagation path loss in 5G frequency band (5G 주파수 대역에서의 실내 복도 전파 경로손실 측정 및 분석)

  • Kim, Hyeong Jung;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.688-693
    • /
    • 2022
  • In this paper, channel propagation path loss was measured in building corridors for frequency bands of 3.7 GHz and 28 GHz, which are used in 5G mobile communication, and compared and analyzed with CI (Close-In) and FI (Floating-Intercept) channel models. To measure the propagation path loss, the measurement was performed while moving the receiver (Rx) from the transmitter (Tx) by 10 m. As a result of the measurement, the PLE (Path Loss Exponent) values of the CI model at 3.7 GHz and 28 GHz were 1.5293 and 1.7795, respectively, and the standard deviations were analyzed as 9.1606 and 8.5803, respectively. In the FI model, 𝛼 values were 79.5269 and 70.2012, 𝛽 values were -0.6082 and 1.2517, respectively, and the standard deviations were 5.8113 and 4.4810, respectively. In the analysis results through the CI model and the FI model, the standard deviation of the FI model is smaller than that of the CI model, so it can be seen that the FI model is similar to the actual measurement result.