• Title/Summary/Keyword: patch repair

Search Result 252, Processing Time 0.022 seconds

Analysis of the adhesive damage for different patch shapes in bonded composite repair of corroded aluminum plate

  • Mohamed, Berrahou;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.123-132
    • /
    • 2016
  • Many military and commercial aging aircrafts flying beyond their design life may experience severe crack and corrosion damage, and thus lead to catastrophic failures. In this paper, were used in a finite element model to evaluate the effect of corrosion on the adhesive damage in bonded composite repair of aircraft structures. The damage zone theory was implemented in the finite element code in order to achieve this objective. In addition, the effect of the corrosion, on the repair efficiency. Four different patch shapes were chosen to analyze the adhesive damage: rectangular, trapezoidal, circular and elliptical. The modified damage zone theory was implemented in the FE code to evaluate the adhesive damage. The obtained results show that the adhesive damage localized on the level of corrosion and in the sides of patch, and the rectangular patch offers high safety it reduces considerably the risk of the adhesive failure.

Repair methods for aging aircraft and application of composite patch repair (노후항공기의 보수 방법 및 복합재 패치보수의 응용)

  • 김위대;김종진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.167-172
    • /
    • 2002
  • During the operation of military aircraft, maintenance is divided into organizational, intermediate and depot maintenance. In the depot maintenance, after removal of major parts and removable doors, damage assessment is performed. Locating damage, charactering the damage and determining its extent, zoning the damage on the part being repaired and re-evaluation of the damaged area after damage removal. Repair joints are classified by bonded joints and bolted joints, depending on joining material. In this paper, repair method in aging aircraft is investigated and the possibility of application of copmposite patch is surveyed.

  • PDF

A Study on Fatigue Crack Growth of Composite Patching Repaired on Cracked Thick Plate (복합재료 보강재로 보수되어진 균열을 가진 두꺼운 평판의 피로균열 성장에 관한 연구)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Go, Myeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2070-2077
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite Patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the palate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

A Experimental Study on the Fatigue Crack Growth Behavior of Thick Plate with Repaired Crack (보수된 균열을 가진 두꺼운 평판의 피로균열 성장 거동에 관한 실험적 연구)

  • Chung, Ki-Hyun;Yang, Won-Ho;Kim, Cheol;Sung, Ki-Deug
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.292-298
    • /
    • 2001
  • An experimental investigation of the effect of composite patching repair was conducted to characterize the fatigue crack growth behavior in thick A16061-T6 (6mm) panels with single bonded patch by fiber reinforced composite patch. Four patch lengths and no patch plate were examined. An analytical procedure, involving three-dimensional finite element method having three layers to model cracked aluminum plate, epoxy by adhesive and composite patch, is calculated the stress intensity factors. From the calculated stress intensity factors, the fatigue crack growth rates are obtained. At the single patching type, different fatigue crack growth ratios through the plate thickness were investigated by using the experimental and analytical results. The results demonstrated that there was a definite variation in fatigue life depending on the size of composite patch. While crack reached the patch end, retardation of crack growth was also revealed in the bonded repair.

  • PDF

A Study of the Mechanical Properties of Patch-Bonded and Riveted Repairs on Cracked Al 6061-T6 alloy Structures

  • Yoon, Young-Ki;Kim, Guk-Gi;Yoon, Hi-Seak
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.55-60
    • /
    • 2000
  • A comparison of Riveted and bonded repairs, bearing and net tension failures, and Al 6061-T6 plates is presented. The results are then compared with previous papers about bonded repairs on different patch materials and shapes. Aluminum alloys, including Al 6061-T6, have a face-centered-cubic crystal structure. Under normal circumstances, these types of crystal structures do not exhibit cleavage fractures even at very low temperatures. In aluminum-base structures, the cracked plate structures are frequently repaired using mechanical fasteners-either rivets of bolts- even though patch-bonding techniques are applied to repair and reinforce the structure. Static test results indicate that the riveted repairs are affected by the position of the rivers. When using the same size of patch, the bonded repair technique is stronger; the rate of elongation is also increased. Form FEM analysis, it is revealed the origin of patch debonding in patch-bonded structures is the edge of the patch along to the tensile strength.

  • PDF

Clinical Analysis on Primary Repair of Tetralogy of Fallot Under 10kg of Body Weight (10 kg 이하의 활로4징증 환자에서 완전교정술에 관한 임상적 고찰)

  • Lee, Sin-Yeong;Kim, Chang-Ho
    • Journal of Chest Surgery
    • /
    • v.24 no.6
    • /
    • pp.560-569
    • /
    • 1991
  • The surgical management of symptomatic tetralogy of Fallot in infants is debatable. From November 1986 to August 1990, 21 infants under 10 kg of the body weight with tetralogy of Fallot underwent primary repair. Mean body weight was 8.6$\pm$1.40kg. All the patient were clubbing and there were cyanotic except for 1 patient. Transannular patch was laid down in 8 patients. Right ventricular outflow patch was used with Goretex but pericardial patch was utilized in 3 patients at the initial period of operation. Incidence of the complications following total correction of tetralogy of Fallot was more frequent in the patients placed with transannular patch compared to the patients with right ventricular outflow tract patch. Two deaths occurred in the 21 patients, Hospital mortality was 9.4%, but there were no operative deaths in the patients who transannular patch was laid down. Causes of deaths were low cardiac output.

  • PDF

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Habib Achache;Rachid Zahi;Djaafar Ait Kaci;Ali Benouis
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.135-147
    • /
    • 2024
  • The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

Effect of stacking sequence of the bonded composite patch on repair performance

  • Beloufa, Hadja Imane;Ouinas, Djamel;Tarfaoui, Mostapha;Benderdouche, Noureddine
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.295-313
    • /
    • 2016
  • In this study, the three-dimensional finite element method is used to determine the stress intensity factor in Mode I and Mixed mode of a centered crack in an aluminum specimen repaired by a composite patch using contour integral. Various mesh densities were used to achieve convergence of the results. The effect of adhesive joint thickness, patch thickness, patch-specimen interface and layer sequence on the SIF was highlighted. The results obtained show that the patch-specimen contact surface is the best indicator of the deceleration of crack propagation, and hence of SIF reduction. Thus, the reduction in rigidity of the patch especially at adhesive layer-patch interface, allows the lowering of shear and normal stresses in the adhesive joint. The choice of the orientation of the adhesive layer-patch contact is important in the evolution of the shear and peel stresses. The patch will be more beneficial and effective while using the cross-layer on the contact surface.

Residual Deformation Induced by the Repair of Composite Shell Structures (복합재료 쉘 구조물의 수리 시 발생하는 잔류변형)

  • 최항석;정의승;이수용
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 1999
  • Finite element analysis and experiment are performed to investigate residual deformation induced by the repair of composite shell structures using a prepreg patch method. The finite element program is developed on the basis of a three-dimensional degenerated shell element and the first order shear deformation theory. The results analyzed for the laminated shell with free boundary conditions are compared with strains measured during the prepreg patch repair. Final residual stresses occur greatly near the patch when the laminated shell with all edges clamped is repaired using the prepreg patch. Stacking sequences of the laminated shell and patch affect significantly the residual stresses which occur even if they are the same.

  • PDF

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect - (보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구-)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.