• 제목/요약/키워드: passive circuit

Search Result 463, Processing Time 0.029 seconds

Current-Mode Electronically Tunable Universal Filter Using Only Plus-Type Current Controlled Conveyors and Grounded Capacitors

  • Minaei, Shahram;Turkoz, Sait
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.292-296
    • /
    • 2004
  • In this paper we present a new current-mode electronically tunable universal filter using only plus-type current controlled conveyors (CCCII+s) and grounded capacitors. The proposed circuit can simultaneously realize lowpass, bandpass, and highpass filter functions - all at high impedance outputs. The realization of a notch response does not require additional active elements. The circuit enjoys an independent current control of parameters $\omega_0$ and $\omega_0/Q$. No element matching conditions are imposed. Both its active and passive sensitivities are low.

  • PDF

Sinusoidal, Pulse, Triangular Oscillator Using Second Generation Current Conveyor

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.566-569
    • /
    • 2010
  • This paper describes the sinusoidal, pulse, triangular oscillator using second generation current conveyor. To obtain the sinusoidal waveform the circuit blocks are constructed by using all pass filter and integrator. The pulse and the triangular waveforms are obtained from the output of sinusoidal oscillator. The peak-to-peak voltages of sinusoidal and triangular waveforms can be easily controlled by the dc offset voltage. Also the output frequency of the oscillator can be controlled by varying passive elements. The designed circuit is verified by HSPICE simulation.

An Active-Only Voltage-Mode Integrator and Its Applications

  • Shinji, Ohyama;Kim, Doh-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.158.4-158
    • /
    • 2001
  • This paper presents a novel circuit configuration for realizing the continuous-time active-only voltage-mode integrator. The proposed integrator consists only of internally compensated type operational amplifier (OA) and operational transconductance amplifiers (OTAs). Since no external passive elements are required, the integrator is suitable for integrated circuit implementation in either bipolar or CMOS technologies. Moreover, the integrator gain can be electronically tuned by adjusting the bias currents of the OTAs. The characteristics of the proposed integrator and the effectiveness of the design procedure in realizing various analog transfer functions have been examined by PSPICE simulation.

  • PDF

APPLICATION OF OBJECTIVE FUNCTIONS FOR THE OPTIMAL FILTER DESIGN FOR HVDC INVERTER

  • Oh, Sung-Chul;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.909-913
    • /
    • 1998
  • Transient and static characteristics of HVDC inverter can be analyzed with various simulation tools. For the optimal filter design, various performance criteria are proposed. In this paper, performance index is calculated based on proposed per phase equivalent circuit. Voltage and harmonic and filter power loss are selected as criteria. Optimization procedure is performed to find optimal passive filter parameters. Dynamic characteristics is also analyzed with proposed equivalent circuit.

  • PDF

A High-Efficiency Two-Switch Flyback Converter with Energy Recovery Snubbers (에너지 재생 스너버를 갖는 고효율 두 스위치 플라이백 컨버터)

  • Kim, Marn-Go;Jung, Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.489-490
    • /
    • 2010
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, and two passive regenerative clamping circuits.The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology and experimental results of the new flyback converter are presented.

  • PDF

LNA Design Uses Active and Passive Biasing Circuit to Achieve Simultaneous Low Input VSWR and Low Noise (낮은 입력 정재파비와 잡음을 갖는 수동 및 능동 바이어스를 사용한 저잡음증폭기에 관한 연구)

  • Jeon, Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1263-1268
    • /
    • 2008
  • In this paper, the low noise power amplifier for GaAs FET ATF-10136 is designed and fabricated with active bias circuit and self bias circuit. To supply most suitable voltage and current, active bias circuit is designed. Active biasing offers the advantage that variations in the pinch-off voltage($V_p$) and saturated drain current($I_{DSS}$) will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets a gate-source voltage($V_{gs}$) for the desired drain voltage and drain current. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA, suitable for input stage matching and gate source bias. The LNA is fabricated on FR-4 substrate with active and self bias circuit, and integrated in aluminum housing. As a results, the characteristics of the active and self bias circuit LNA implemented more than 13 dB and 14 dB in gain, lower than 1 dB and 1.1 dB in noise figure, 1.7 and 1.8 input VSWR at normalized frequency $1.4{\sim}1.6$, respectively.

Practical Design and Implementation of a Power Factor Correction Valley-Fill Flyback Converter with Reduced DC Link Capacitor Volume (저감된 DC Link Capacitor 부피를 가지는 역률 개선 Valley-Fill Flyback 컨버터의 설계 및 구현)

  • Kim, Se-Min;Kang, Kyung-Soo;Kong, Sung-Jae;Yoo, Hye-Mi;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.277-284
    • /
    • 2017
  • For passive power factor correction, the valley fill circuit approach is attractive for low power applications because of low cost, high efficiency, and simple circuit design. However, to vouch for the product quality, two dc-link capacitors in the valley fill circuit should be selected to withstand the peak rectified ac input voltage. The common mode (CM) and differential mode (DM) choke should be used to suppress the electromagnetic interference (EMI) noise, thereby resulting in large size volume product. This paper presents the practical design and implementation of a valley fill flyback converter with reduced dc link capacitors and EMI magnetic volumes. By using the proposed over voltage protection circuit, dc-link capacitors in the valley fill circuit can be selected to withstand half the peak rectified ac input voltage, and the proposed CM/DM choke can be successfully adopted. The proposed circuit effectiveness is shown by simulation and experimentally verified by a 78W prototype.

A Study of Voltage Balancing Method in Series-Connected EDLCs for High Power Applications (다중 직렬 연결된 대용량 EDLC 모듈에 적합한 전압 밸런싱 기법에 대한 연구)

  • Cha, Dae-Joong;Baek, Ji-Eun;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.22-27
    • /
    • 2015
  • In this paper, the problem of voltage unbalancing in series-connected multiple electric double-layer capacitors(EDLCs) is studied. Good understanding of this problem is required in order to increase reliability and stability of an energy storage system comprising EDLCs. Existing methods to settle voltage unbalancing cannot mitigate the problem enough for each cell, since most method have been applied to each module. For equalizing between cells, Zener diode which is one of passive method have been well examined in literature. However, Zener have well not used in balancing due to heating problem. In addition, It is difficult to choose Zener diode fitted rating voltage of EDLC, because of its internal resistance. Thus, we proposed passive balancing using Zener diode by analyzing parasitic element of Zener and EDLC. To experimentally confirm the balancing effect, we compared in two occasions which are with and without passive. As a result, proposed passive balancing circuit mitigated unbalanced voltage gap between EDLCs.

A Study on the Combining Circuit of New Active EMI Filter (새로운 능동EMI필터의 결합회로에 관한 연구)

  • Choi, Min-Whan;Shin, Dong-Seok;Lee, Dong-Ho;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.78-89
    • /
    • 2015
  • Conventional EMI filters have tried to use an active EMI filter as a series by the series connection of two EMI filters for CM and DM noise. However, the proposed filter is formed into one circuit by using the active EMI filter which is able to filter CM and DM noise components together. As a result, the active EMI filter showed the outstanding quality in mass and volume under 50% and electric characteristics have been compared to the passive EMI filter in approximately 150kHz~10MHz. Furthermore, the proposed circuit has simple circuit components by comparing with the series EMI filters, and electrical characteristics are similar. The noise have been attenuated to maximum 20dBuV.

Digital Firing Control for Thyristor Converter (사이리스터 디지털 점호제어)

  • Kim Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.584-591
    • /
    • 2004
  • The conventional analog-based firing circuit can be implemented by comparing a linearly decreasing periodic sawtooth waveform synchronized to the ac supply, with a control signal corresponding to the desired converter delay angle. This circuit requires a large number of passive components (resistance and capacitor) and careful adjustment of the synchronization circuity. In this paper a novel firing circuit is proposed for thyristor switch. The proposed circuit is implemented by using digital components(FPGA, A/D, and DSP etc.) on the basis of the analog cosine method.