• Title/Summary/Keyword: particulate soil

Search Result 151, Processing Time 0.024 seconds

Determination of Soil Sample Size Based on Gy's Particulate Sampling Theory (Gy의 입자성 물질 시료채취이론에 근거한 토양 시료 채취량 결정)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2011
  • A bibliographical review of Gy sampling theory for particulate materials was conducted to provide readers with useful means to reduce errors in soil contamination investigation. According to the Gy theory, the errors caused by the heterogeneous nature of soil include; the fundamental error (FE) caused by physical and chemical constitutional heterogeneity, the grouping and segregation error (GE) aroused from gravitational force, long-range heterogeneous fluctuation error ($CE_2$), the periodic heterogeneity fluctuation error ($CE_3$), and the materialization error (ME) generated during physical process of sample treatment. However, the accurate estimation of $CE_2$ and $CE_3$ cannot be estimated easily and only increasing sampling locations can reduce the magnitude of the errors. In addition, incremental sampling is the only method to reduce GE while grab sampling should be avoided as it introduces uncertainty and errors to the sampling process. Correct preparation and operation of sampling tools are important factors in reducing the incremental delimitation error (DE) and extraction error (EE) which are resulted from physical processes in the sampling. Therefore, Gy sampling theory can be used efficiently in planning a strategy for soil investigations of non-volatile and non-reactive samples.

Characteristics of Artificially Soiled Fabrics Containing Ferric Oxinate as a Tracer (Ferric Oxinate를 標職物質로 사용한 人工汚染布의 洗滌特性)

  • Ahn, Kyung Cho;Kim, Sung Reon
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.83-89
    • /
    • 1996
  • Carbon black has been used as a particulate soil to prepare artificial soiled fabrics for detergent study but it has two major defects. The one is the difficulty of quantitative analysis of carbon black for evaluate the detergency, the other is that there is no reliable correlation between the removal of carbon black and oily soil which is the major component of natural soil. In this study ferric oxinate was used as a particulate soil since it is in black color and can be soiled on fabric by suspension in water or by solution in chloroform and it is easily analysed quantitatively by extracting it from soiled fabric with chloroform to get correct value of soil removal. The characteristics of soil removal of ferric oxinate were compared with that of carbon black and Sudan black, an oil soluble dye, which had been proved that it's detergency correlated with that of oily soil The soil removal of ferric oxinate and Sudan black estimated from quantitative analysis and from K/S value were in good agreement whereas the result calculated by simple reflectance was consistently low. The soil removal of ferric oxinate was exceeded from that of carbon black without regard to surfactants, Triton and Las, but the effect of washing conditions such as temperature and washing time on soil removal of both soils with different suffactants showed no considerable difference. Though the soil removal of Sudan black was little effected by the conditions, the soil removal in Triton exceeded considerably that of in Las, which is the characteristic of oily soil. Thus the soil removal of Sudan black was in good agreement with ferric oxinate in Triton, a non-ionic surfactant, and with carbon black in Las, an artionic surfactant. We concluded that ferric oxinate is a more realistic model particulate soil for artificial soiled cotton fabric washed with non-ionic surfactant than carbon black.

  • PDF

Analysis of Growth Indicators of Applied Plants by AHU(Air Handling Unit)-linking with Artificial Soil-based Vegetation Bio-filters (인공토양기반 식생바이오필터의 AHU(Air Handling Unit) 연계를 통한 적용식물의 생육지표 분석)

  • Kim, Tae-Han;Lee, So-Dam;An, Byung-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.3
    • /
    • pp.99-110
    • /
    • 2018
  • Compared to yellow dust coming from China or particulate matter created naturally in spring due to Total Suspended Particulate(TSP), particulate matter in winter season have much more serious effect on human body as they penetrate cell membranes. Although such particulate matter are becoming a social issue, there are no concrete plans on how to reduce them. Air-purifying plants are limited in maintaining the indoor air quality of large area because it is usually difficult to quantify their performance. In order to improve this, a bio-filter that can be connected to air conditioner is suggested as an option. This study seeks to improve air conditioning model-based monitoring method for bio-filters from prior studies and objectify correlations between applied vegetation and growing environment into quantitative indicators. By doing so, this study seeks to provide criteria on plants applied to artificial soil-based vegetation bio-filters and basic information to set air-conditioning features. The study results confirmed significant tendency on the growing stability of each purifying plant in mechanical air-conditioning environment. Among three models selected for bio-filter vegetation models, epipremnum aureum showed high performance in quantitative indicators, including soil moisture, EC, and leaf temperature, etc., indicating that it would assure the highest growing stability in this test air-conditioning environment.

Studies on the Detergency Characteristics of Free Fatty Acid in Oily Soil (Part II. Detergency of Particulate Soil) (오염중의 유리지방산이 세척성에 미치는 영향 제2보 고형오염의 세척성)

  • Kim Eun Ok;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.4 no.1_2
    • /
    • pp.43-48
    • /
    • 1980
  • The effect of free fatty acid in fatty soil on the detergency of particulate soil was investigated. Cotton lawn fabric was soiled with the mixture of polmitic acid, hydrogenated fat, paraffin oil and iron oxide black altering the contents of palmitic acid and was laundered with different sur-fastants under various temperature and alkalinity. The rate of soil removal was estimated by means of the spectoometic analysis of iron on the fabric before and after washing. The results of dergency were compared those obtained by reflactance and K/S value from Kubelka-Munk equation which were derived from reflactance measurements.

  • PDF

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Behavior of the Dissolved and Particulate Nutrient at Paddy Field Area (광역논에서의 용존성과 입자성 영양물질의 거동 특성)

  • Oh, Seung Young;Kim, Jin Soo;Jung, Gu Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.543-546
    • /
    • 2004
  • Nutrients behavior were investigated at a paddy fields area(Soro-ri) with large-scaled plots on loam soil during irrigation seasons of $2001\~2003$. The average concentration of TN, TDN and TDP in drainage water was higher than that in irrigation water. On the other hand, the average concentration TP in irrigation water was higher than in drainage water. The ratio of TDN to TN accounted (or over $90\%$ and the ratio of TDP to TP accounted for $50\~70\%$. Especially the ratio of TDP to TP in drainage water was higher than that in irrigation water, suggesting that much of particulate component was reduced due to sedimentation and adsorption in paddy fields plots. Overall, particulate phosphorus usually account for 44 to $77\%$ of tile total phosphorus during storm events.

  • PDF

Source Characteristics of Particulate Trace Metals in Daegu Area (대구지역 부유분진 중 미량금속성분의 발생원 특성연구)

  • 최성우;송형도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.469-476
    • /
    • 2000
  • This study was performed to understand the behavior and source characteristics of particulate trace metals in Daegu area. To do this, total of 84 samples had been collected from January to December 1999. TSP (total suspended particulate matter) and PM-10(particulate matter with aerodynamic diameters less 10${\mu}{\textrm}{m}$) were collected by filters on portable air sampler, and in TSP and PM-10 were analyzed by ICP(Inductively Coupled Plasma Spectrometer) after preliminary treatment. The results were follow as: first, annul means of TSP and PM-10 concentration were 123 and 69$\mu\textrm{g}$/㎤ respectively. The concentration of TSP adn PM-10 were highest in winter season compared to other seasons. Second, the concentration of Al, Fe, Mn were higher in TSP than in PM-10, indicating that these metals are generally associate with natural contributions. Third, a hierarchical clustering technique was used to group 9 metals. The results from the cluster analysis of TSP and PM-10 shows a similar clustering pattern : Fe, Al in a group and the rest of the metals such as Ni, Cr, As, Mn, Cd, Pb, Zn in the other group. One group of metal such as Fe, Al is associated with natural sources such as soil and dust. The other is closely related to urban anthropogenic sources such as fuel combustion, incineration, and refuse burning, Finally, using Al as a reference element, enrichment factors were used for identifying the major particulate contributors. The enrichment factors of Al. Fe<10 (standard value of enrichment factor) were considered to have a significant dust and soil source and termed nonenriched. Ni, Cr, As, Mn, Cd, Pb, Zn》10 is enriched and has a significant which is contributed by athropogenic sources.

  • PDF

Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

  • Lee, Jin-Ho;Doolittle, James J.;Lee, Do-Kyoung;Malo, Douglas D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2006
  • Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.739-744
    • /
    • 2002
  • Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

  • PDF

Chemical characteristics of atmospheric particulate species in Mt. Soback, Korea(II):The sources and seasonal variations of metallic elements (소백산 대기 중 입자상 물질의 화학적 특성에 관한 연구(II):금속 원소의 계절적인 변화와 기원을 중심으로)

  • 최만식;이선기;최재천;이민영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.191-198
    • /
    • 1995
  • In order to evaluate the distribution and behaviour of atmospheric particulate metals in high-altitude area, we collected 22 aerosol samples using a high volume air sampler at Soback Mt. Meteorological Observation Station from Jan. to Nov. 1993 and analysed for metals (Al, Fe, Mg, Na, Ca, Mn, Co, Ni, Cu, Zn, Cd, and Pb) with ICP/AES and ICP/MS. Although sampling site is located in high-altitude and far from local sources of atmospheric pollutants, enrichments of metals are 2 times higher than those of western coastal reural area. This fact may imply that of metallic pollutants in the coastal rural site were came from further western side (e.g. China), atmospheric metals in this study area contain the signal of metropolitan cities located in the main wind direction (NNW). Sea salts are negligible in the aerosol particle population because reference elements of sea salts (Na, Mg) are all originated from soil particles. The contents of soil particles in aerosols are highest in spring and lowest in winter. Atmospheric enriched elements (Ni, Cu, Zn, Cd and Pb) are diluted with soil particles, especially during the yellow sand period. The results of factor analysis suggest possibility of interpreting their chemical significance in terms of sources (soil, pollutants) and gas-particle conversion processes (formation of ammonium sulfates, ammonium nitrates and/or their mixtures).

  • PDF