Remote Sensing Information Models for Sediment and Soil

  • Ma, Ainai (Institute of Remote Sensing and GIS Peking University, Beijing)
  • Published : 2002.10.01

Abstract

Recently we have discovered that sediments should be separated from lithosphere, and soil should be separated from biosphere, both sediment and soil will be mixed sediments-soil-sphere (Seso-sphere), which is using particulate mechanics to be solved. Erosion and sediment both are moving by particulate matter with water or wind. But ancient sediments will be erosion same to soil. Nowadays, real soil has already reduced much more. Many places have only remained sediments that have ploughed artificial farming layer. Thus it means sediments-soil-sphere. This paper discusses sediments-soil-sphere erosion modeling. In fact sediments-soil-sphere erosion is including water erosion, wind erosion, melt-water erosion, gravitational water erosion, and mixed erosion. We have established geographical remote sensing information modeling (RSIM) for different erosion that was using remote sensing digital images with geographical ground truth water stations and meteorological observatories data by remote sensing digital images processing and geographical information system (GIS). All of those RSIM will be a geographical multidimensional gray non-linear equation using mathematics equation (non-dimension analysis) and mathematics statistics. The mixed erosion equation is more complex that is a geographical polynomial gray non-linear equation that must use time-space fuzzy condition equations to be solved. RSIM is digital image modeling that has separated physical factors and geographical parameters. There are a lot of geographical analogous criterions that are non-dimensional factor groups. The geographical RSIM could be automatic to change them analogous criterions to be fixed difference scale maps. For example, if smaller scale maps (1:1000 000) that then will be one or two analogous criterions and if larger scale map (1:10 000) that then will be four or five analogous criterions. And the geographical parameters that are including coefficient and indexes will change too with images. The geographical RSIM has higher precision more than mathematics modeling even mathematical equation or mathematical statistics modeling.

Keywords