• Title/Summary/Keyword: particulate metal

Search Result 206, Processing Time 0.025 seconds

Environmental Source of Arsenic Exposure

  • Chung, Jin-Yong;Yu, Seung-Do;Hong, Young-Seoub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.5
    • /
    • pp.253-257
    • /
    • 2014
  • Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

Growth of Al2O3/Al Composite by Directed Metal Oxidation of Al Surface Doped with Sodium Source

  • Park, Hong Sik;Kim, Dong Seok;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • Both an unreinforced $Al_2O_3$/Al matrix and a ${\alpha}-Al_2O_3$ particulate reinforced composite have been produced by the oxidation of an Al surface doped with NaOH in the absence of any other dopant. Fabrication of the matrix was initiated by the formation of $NaAlO_2$, which provides a favorable surface structure for the matrix formation by breaking the protective $Al_2O_3$ layer on Al. During the matrix growth, the external surface of the growth front was covered with a very thin sodium-rich oxide. A cyclic formation process of the sodium-rich oxide on the growth surface was proposed for the sodium-induced directed metal oxidation process. This process involves dissolution of the sodium-rich oxide, motion of Na to the growth front, and re-formation of the oxide on the surface. Near-net-shape composites were fabricated by infiltrating an $Al_2O_3$/Al matrix into a ${\alpha}-Al_2O_3$ particulate preform, without growth barrier materials. The infiltration distance increased almost linearly in the NaOH-doped preform.

A Study on Fatigue Damage Accumulation of MMC using Ultrasonic Wave and Acoustic Emission (초음파와 AE기법을 이용한 금속복합재료의 피로손상진전 평가)

  • 이진경;이준현
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • SiC particulate reinforced metal matrix composites(MMCs) are emerging as candidate materials for the automobile and aerospace industries due to their significant increase in elastic modulus and strength compared to conventional metallic materials. However, in order to make successful application of MMCs, it is very important to understand micro-failure mechanism under cyclic loading because failure mechanism of MMC is dominated by accumulation of micro-failure due to applied loading. In this study, ultrasonic Lamb wave and acoustic emission(AE) have been used to monitor microscopic damage accumulation under cyclic loading for SiC particulate reinforced metal matrix composite(SiCp/A356). It was found that the change in velocity and attenuation of ultrasonic Lamb wave due to the increase of loading cycles could be characterized by three different stages corresponding to the microscopic fracture processes. The characteristic of AE signal at each stage was analyzed and discussed by comparing with the change of ultrasonic characteristic in MMCs.

  • PDF

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by a Pressureless Metal Infiltration Process (무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성)

  • 김재동;정순억;김형진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • The effect of size and volume fraction of ceramic particles, with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by the pressureless infiltration process. The metal matrix composites exhibited about 5.5 - 6 times the wear resistance compared with AC8A alloy at high sliding velocity, and by increasing the particle size and decreasing the volume fraction, the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity, linearly : whereas, metal matrix composites indicated more wear loss than AC8A alloy at the slow velocity region. However, a transition point of wear loss was found at the middle velocity region, which shows the minimum wear loss. Further, wear loss at the high velocity region exhibited nearly the same value as the slow velocity region. In terms of wear mechanism, the metal matrix composites generally exhibited abrasive wear at slow to high sliding velocity; however, AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

Source Characteristics of Particulate Trace Metals in Daegu Area (대구지역 부유분진 중 미량금속성분의 발생원 특성연구)

  • 최성우;송형도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.469-476
    • /
    • 2000
  • This study was performed to understand the behavior and source characteristics of particulate trace metals in Daegu area. To do this, total of 84 samples had been collected from January to December 1999. TSP (total suspended particulate matter) and PM-10(particulate matter with aerodynamic diameters less 10${\mu}{\textrm}{m}$) were collected by filters on portable air sampler, and in TSP and PM-10 were analyzed by ICP(Inductively Coupled Plasma Spectrometer) after preliminary treatment. The results were follow as: first, annul means of TSP and PM-10 concentration were 123 and 69$\mu\textrm{g}$/㎤ respectively. The concentration of TSP adn PM-10 were highest in winter season compared to other seasons. Second, the concentration of Al, Fe, Mn were higher in TSP than in PM-10, indicating that these metals are generally associate with natural contributions. Third, a hierarchical clustering technique was used to group 9 metals. The results from the cluster analysis of TSP and PM-10 shows a similar clustering pattern : Fe, Al in a group and the rest of the metals such as Ni, Cr, As, Mn, Cd, Pb, Zn in the other group. One group of metal such as Fe, Al is associated with natural sources such as soil and dust. The other is closely related to urban anthropogenic sources such as fuel combustion, incineration, and refuse burning, Finally, using Al as a reference element, enrichment factors were used for identifying the major particulate contributors. The enrichment factors of Al. Fe<10 (standard value of enrichment factor) were considered to have a significant dust and soil source and termed nonenriched. Ni, Cr, As, Mn, Cd, Pb, Zn》10 is enriched and has a significant which is contributed by athropogenic sources.

  • PDF

Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites (금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF

Behavior of trace metals in Masan Bay, Korea during oxygen deficient period (하계 마산만 혐기성 환경에서의 미량금속의 거동)

  • Jin Y.H.;Kim K.T.;Chung C.S.;Kim S.H.;Yang D.B.;Hong G.H.;Lee K.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.56-64
    • /
    • 2000
  • Behavior of trace metals in Masan Bay, Korea was studied in August 1998 when the oxygen deficient condition occurred. Dissolved Cd and Zn concentration in the surface waters decreased with increasing distance from Masan Harbor. Dissolved concentrations of Cd, Cu Pb and Zn in the surface waters were higher than bottom waters. Particulate(acid-teachable fraction) concentrations of Cu, Cd and Pb in the surface waters of Masan Bay decreased with increasing distance from Masan Harbor. Bottom waters contained higher concentrations of particulate Cd, Cu, Pb and Zn than surface waters. Distribution coefficients between dissolved and particulate phase (K/sub d/) of Cu and Cd decreased with the increasing distance from the Harbor, possibly due to reaction of these elements with sewage-derived particulate matter Al, Zn, Cu, Cd, and Pb in the surface sediment showed relatively high concentration in the inner Masan Bay.

  • PDF

Reheating Process of Metal Matrix Composites Fabricated by Combined Stirring Process for Thixoforming (복합교반법으로 제조한 금속복합재료의 Thixoforming용 재가열공정)

  • 이동건;강충길
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • The forming process of metal matrix composites by die casting and squeeze casting process are limited in size and dimension In term of final parts. The melt strirring method have the problems that the homogeneous distribution of the reinforcements is difficult due to the low weldability and the density difference between the molten metal and the reinforcement. The thixoforming process for metal matrix composites has numerous advantages compacted to die casting, squeeze casting and compocasting. However, for the thixofoming process, the billet with the desired volume fraction must be heated to obtain a uniform temperature distribution over the entire cross-sectional areas. To obtain the reheating conditions of composites, the particulate reinforced metal matrix composites for thixoforming were fabricated by combined stirring process which is simultaneously performed with electro-magnetic stirring and mechanical stirring process. The matrix alloy and reinforcement are used to aluminum alloy(A357) and SiCp with diameter 14, $25{\mu}m$, respectively. The microstructure characteristics were investigated by changing the volume fraction and reinforcement size. The heating conditions to obtain the uniform temperature distribution in cross section area of fabricated metal matrix composites billet are proposed with heating time, the heating temperature and the holding time.