DOI QR코드

DOI QR Code

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat (Department of Machine and Metal Technologies Sakarya University, Hendek Vocational School)
  • Received : 2015.11.23
  • Accepted : 2016.08.17
  • Published : 2016.08.30

Abstract

$Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

Keywords

References

  1. Alpas, A.T. and Zhang, J. (1994), "Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminium matrix composites", Metal. Mater. Trans. A, 25(5), 969-983. https://doi.org/10.1007/BF02652272
  2. Anand, K., Mahapatra, M.M. and Jha, P.K. (2013), "Modelling the abrasive wear characteristics of in-situ synthesized Al-4.5%Cu/TiC composites", Wear, 306(1-2), 170-178. https://doi.org/10.1016/j.wear.2013.08.013
  3. Azmah, H.M.A., Chang, C.S. and Khang, C.O. (2011), "Effect of a two-step solution heat treatment on the microstructure and mechanical properties of 332 aluminium silicon cast alloy", Mater. Des., 32(4), 2334-2338. https://doi.org/10.1016/j.matdes.2010.12.040
  4. Bensam, R., Marimuthu, P., Prabhakar, M. and Anandakrishnan, V. (2012), "Effect of sintering temperature and time intervals on workability behaviour of Al-SiC matrix P/M composite", Int. J. Adv. Manufact. Techn., 61(1), 237-252. https://doi.org/10.1007/s00170-011-3709-4
  5. Caracostas, C.A., Chiou, W.A., Fine, M.E. and Cheng, H.S. (1997), "Tribological properties of aluminium alloy matrix TiB2 composite prepared by in-situ processing", Metal. Mater. Trans. A, 28(2), 491-502. https://doi.org/10.1007/s11661-997-0150-2
  6. Carmita, C.N. (2013), "Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using taguchi methodology and ANOVA", J. Clean. Produc., 53, 195-203. https://doi.org/10.1016/j.jclepro.2013.03.049
  7. Ceschini, L., Minak, G. and Morri, A. (2006), "Tensile and fatigue properties of the AA6061/20 vol.% $Al_2O_3p$ and AA7005/10 vol.% $Al_2O_3p$ composites", Comp. Sci. Tech., 66(2), 333-342. https://doi.org/10.1016/j.compscitech.2005.04.044
  8. Chou, S.N., Huang, J.L., Lii, D.F. and Lu, H.H. (2006), "Mechanical properties of $Al_2O_3$/aluminium alloy A356 composite manufactured by squeeze casting", J. Alloy. Compounds, 419(1-2), 98-102. https://doi.org/10.1016/j.jallcom.2005.10.006
  9. Chu, S. and Wu, R. (1999), "The structure and bending properties of squeeze-cast composites of A356 aluminium alloy reinforced with alumina particles", Comp. Sci. Tech., 59(1), 157-162. https://doi.org/10.1016/S0266-3538(97)00187-5
  10. Devaraju, A., Kumar, A. and Kotiveerachari, B. (2013a), "Influence of rotational speed and reinforcements on wear and mechanical properties of aluminium hybrid composites via friction stir processing", Mater. Des., 45, 576-585. https://doi.org/10.1016/j.matdes.2012.09.036
  11. Devaraju, A., Kumar, A., Kumaraswamy, A. and Kotiveerachari, B. (2013b), "Influence of reinforcements (SiC and $Al_2O_3$) and rotational speed on wear and mechanical properties of aluminium alloy 6061-T6 based surface hybrid composites produced via friction stir processing", Mater. Des., 2013, 51, 331-341.
  12. Dwivedi, S.P., Kumar, S. and Kumar, A. (2012), "Effect of turning parameters on surface roughness of A356/5%SiCp composite produced by electromagnetic stir casting", J. Mech. Sci. Tech., 26(12), 3973-3979. https://doi.org/10.1007/s12206-012-0914-5
  13. Elayaperumal, R. and Issac, F. (2013), "A statistical analysis of optimization of wear behaviour of Al-$Al_2O_3$ composites using taguchi technique", Proc. Eng., 64, 973-982. https://doi.org/10.1016/j.proeng.2013.09.174
  14. Ezatpour, H.R., Sajjadi, S.A., Sabzevar, M.H. and Huang, Y. (2014), "Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting", Mater. Des., 55, 921-928. https://doi.org/10.1016/j.matdes.2013.10.060
  15. Fisher R.A. (1961), Design of Experiments, Oliver Boyd, Edinburgh, UK.
  16. Fukumoto, I., Mekaru, S., Shibata, S. and Nakayama, K. (2006), "Fabrication of composite material using alumina agglomerated sludge and aluminium powder by spark plasma sintering", Int. J. Ser Solid Mech. Mater. Eng., 49(1), 91-94.
  17. Gopalakrishnan, S. and Murugan, N. (2012), "Production and wear characterization of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method", Comp. Part B: Eng., 43(2), 302-308. https://doi.org/10.1016/j.compositesb.2011.08.049
  18. Gui, M.C., Wang, D.B., Wu, J.J., Yuan, G.J. and Li, C.G. (2000), "Microstructure and mechanical properties of cast (Al-Si)/SiCp composites produced by liquid and semisolid double stirring process", Mater. Sci. Tech., 16(5), 556-563. https://doi.org/10.1179/026708300101508072
  19. Gupta, M., Ibrahim, I.A., Mohamed, F.A. and Lavernia, E.J. (1991), "Wetting and interfacial reactions in $Al-Li-SiC_p$ metal matrix composites processed by spray atomization and deposition", J. Mater. Sci., 26(24), 6673-6684. https://doi.org/10.1007/BF02402660
  20. Han, N.L., Wang, Z.G. and Sun, L.Z. (1995), "Low cycle fatigue behaviour of SiCp reinforced aluminium matrix composite at ambient and elevated temperature", Scr. Metal. Mater., 32(11), 1739-1745. https://doi.org/10.1016/0956-716X(95)00006-H
  21. Hashim, J., Looney, L. and Hashmi, M.S.J. (1999), "Metal matrix composites: production by the stir casting method", J. Mater. Proc. Tech., 92-93, 1-7. https://doi.org/10.1016/S0924-0136(99)00118-1
  22. Hashim, J., Looney, L. and Hashmi, M.S.J. (2002), "Particle distribution in cast metal matrix composites", J. Mater. Proc. Tech., 123(2), 251-257. https://doi.org/10.1016/S0924-0136(02)00098-5
  23. Kennedy, A.R. and Wyatt, S.M. (2000), "The effect of processing on mechanical properties and interfacial strength of aluminium/TiC MMCs", Comp. Sci. Tech., 60(2), 307-314. https://doi.org/10.1016/S0266-3538(99)00125-6
  24. Kim, Y.H., Lee, C.S. and Han, K.S. (1992), "Fabrication and mechanical properties of aluminium matrix composite materials", J. Compos. Mater., 26, 1062-1086. https://doi.org/10.1177/002199839202600707
  25. Kok, M. (2005), "Production and mechanical properties of $Al_2O_3$ particle-reinforced 2024 aluminum alloy composites", J. Mate. Proc. Tech., 161(3), 7-381.
  26. Kong, H.B., Jien, L.S. and Ten, J.M. (1996), "The Interfacial compounds and SEM fractography of squeezecast SiCp /6061 Al composites", Mater. Sci. Eng. A, 206(1), 110-119. https://doi.org/10.1016/0921-5093(95)09979-4
  27. Lloyd, D.J. and Brotzen, F.R. (1999), "Particle reinforced aluminium and mg matrix composites", Int. Mater. Reviews, 39(1), 1-39. https://doi.org/10.1179/095066094790150982
  28. Naher, S., Brabazon, D. and Looney, L. (2003), "Simulation of the stir casting process", J. Mater. Proc. Tech., 143-144, 567-571. https://doi.org/10.1016/S0924-0136(03)00368-6
  29. Pai, D., Rao, S., Shetty, R. and Nayak, R. (2010), "Application of response surface methodology on surface roughness in grinding of aerospace materials (6061Al-15Vol% SiC25p)", ARPN J. Eng. App. Sci., 5(6), 23-28.
  30. Patel, R.R. and Patel, V.A. (2012), "Effect of machining parameters on Surface roughness and power consumption for 6063 Al alloy TiC Composites (MMCs)", Int. J. Eng. Rese. App., 2(4), 295-300.
  31. Patel, P.R., Patel, B.B. and Patel, V.A. (2013), "Effect of machining parameters on surface roughness for Al-TiC (5&10%) metal matrix composite using RSM", Int. J. Res. Eng. Tech., 2(1), 65-71. https://doi.org/10.15623/ijret.2013.0201013
  32. Peters, P.W.M., Hemptenmacher, J. and Schurmann, H. (2010), "The fibre/matrix interface and its influence on mechanical and physical properties of Cu-MMC", Comp. Sci. Tech., 70(9), 1321-1329. https://doi.org/10.1016/j.compscitech.2010.04.007
  33. Prabu, S.B., Karunamoorthy, L., Kathiresan, S. and Mohan, B. (2006), "Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite", J. Mater. Proc. Tech., 171(2), 268-273. https://doi.org/10.1016/j.jmatprotec.2005.06.071
  34. Punith, G.K., Prakash, J.N., Gowda, S. and Satish, B.B. (2015), "Effect of Particulate Reinforcement on the Mechanical Properties of Al2024-WC MMCs", J. Miner. Mater. Character. Eng., 3(6), 469-476.
  35. Radhika, N., Subramanian, R. and Venkat, P.S. (2011), "Tribological behaviour of aluminium/ alumina/graphite hybrid metal matrix composites taguchi's techniques", J. Miner. Mater. Character. Eng., 10(5), 427-443.
  36. Rajmohan, T., Palanikumar, K. and Ranganathan, S. (2013), "Evaluation of mechanical and wear properties of hybrid aluminium matrix composites", Trans. Nonfer. Metal. Soc. China, 23(9), 2509-2517. https://doi.org/10.1016/S1003-6326(13)62762-4
  37. Rajmohan, T., Palanikumar, K. and Arumugam, S. (2014), "Synthesis and characterization of sintered hybrid aluminium matrix composites reinforced with nanocopper oxide particles and micro silicon carbide particles", Comp., Part B, 59, 43-49. https://doi.org/10.1016/j.compositesb.2013.10.060
  38. Ross, P.J. (1996), Taguchi Techniques for Quality Engineering, (2nd Edition), McGraw-Hill, New York, NY, USA.
  39. Roy, R.K. (2001), Design of Experiments using the Taguchi Approach: 16 Steps to Product and Process Improvement, John Wiley & Sons, Inc., New York, NY, USA.
  40. Sajjadi, S.A., Parizi, M.T., Ezatpour, H.R. and Sedghi, A. (2012), "Fabrication of A356 composites reinforced with micro and nano $Al_2O_3$ particles by a developed compocasting method and study of their properties", J. Alloys Compound., 511(1), 226-231. https://doi.org/10.1016/j.jallcom.2011.08.105
  41. Salvador, M.D., Amigó, V., Martinez, N. and Busquets, D.J. (2003), "Microstructure and mechanical behaviour of Al-Si-Mg alloys reinforced with Ti-Al inter metallics", J. Mater. Proc. Tech., 143-144, 605-611. https://doi.org/10.1016/S0924-0136(03)00440-0
  42. Sato, A. and Mehrabian, R. (1976), "Aluminium matrix composites: Fabrication and properties", Metall. Mater. Trans. B, 7(3), 443.
  43. Soon, H., Chung, H. and Kyung, H. (1995), "The effects of processing parameters on mechanical properties of SiCw/2124Al composites", J. Mater. Proc. Tech., 48(1-4), 349-355. https://doi.org/10.1016/0924-0136(94)01668-Q
  44. Srivatsan, T.S. (1996), "Microstructure, the tensile properties and fracture behaviour of $Al_2O_3$ particulate reinforced aluminium alloy metal matrix composites", J. Mater. Sci., 31(5), 1375-1388. https://doi.org/10.1007/BF00353120
  45. Swamy, A., Ramesha, A., Kumar, G. and Prakash, J. (2011), "Effect of particulate reinforcements on mechanical properties of Al6061-WC and Al6061-Gr MMCs", J. Miner. Mater. Character. Eng., 10(12), 1141-1152. https://doi.org/10.4236/jmmce.2011.1012087
  46. Toptan, F., Kerti, I. and Rocha, L.A. (2012), "Reciprocal dry sliding wear behaviour of $B_4Cp$ reinforced aluminium alloy matrix composites", Wear, 290-291, 74-85. https://doi.org/10.1016/j.wear.2012.05.007
  47. Trezona, R.I., Pickles, M.J. and Hutchings, I.M. (2000), "A full factorial investigation of the erosion durability of automotive clear coats", Trib. Inter., 33(8), 559-571. https://doi.org/10.1016/S0301-679X(00)00106-7
  48. Wang, Y.Q., Afsar, A.M., Jang, J.H., Han, K.S. and Song, J.L. (2010), "Room temperature dry and lubricant wear behaviours of $Al_2O_3f/SiCp/Al$ hybrid metal matrix composites", Wear, 268(7-8), 863-870. https://doi.org/10.1016/j.wear.2009.11.010
  49. Yilmaz, O. and Buytoz, S. (2001), "Abrasive wear of $Al_2O_3$-reinforced aluminium-based MMCs", Comp. Sci. Tech., 61(16), 2381-2392. https://doi.org/10.1016/S0266-3538(01)00131-2
  50. Zhu, H.X. and Liu, S.K. (1993), "Mechanical properties of squeeze cast zinc alloy matrix composites containing alpha-alumina fibers", Comp., 24(6), 437. https://doi.org/10.1016/0010-4361(93)90251-3

Cited by

  1. Multi-objective durability and layout design of fabric braided braking hose in cyclic motion vol.25, pp.4, 2016, https://doi.org/10.12989/scs.2017.25.4.403
  2. Manufacturing Methodology on Casting-Based Aluminium Matrix Composites: Systematic Review vol.11, pp.3, 2021, https://doi.org/10.3390/met11030436