• Title/Summary/Keyword: particle trajectory simulation

Search Result 49, Processing Time 0.023 seconds

Numerical Simulation on Flow and Heat Transfer in a Gas Atomizer (가스분무장치에서 열유동 특성에 관한 전산해석)

  • 이성연
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • Flow and heat transfer characteristics of gas, and trajectories and cooling characteristics of droplets/particles in a gas atomizer were investigated by a numerical simulation using FLUENT code. Among several kinds of solution method, the k-$\varepsilon$ turbulent model, power-law scheme, SIMPLE algorithm is adopted in this study. Momentum and heat exchange between a continuous phase(gas) and a dispersed phase(particle) were taken into account. Particle trajectories are simulated using the Lagrangian method, and Rosin-Rammler formula is used for the particle size distribution. Streamlines, velocities and pressures of gas, and trajectories, velocities and cooling rates of particles have been investigated for the various gas inlet conditions. Small but very intensive recirculation is found just below the melt orifice, and this recirculation seems to cause the liquid metal to spread radially. Particle trajectory depends on the particle size, the location of particle formation and the turbulent motion of gas. Small particle cools down rapidly, while large diameter particles solidify slowly, and this is mainly due to the differences in thermal inertia.

  • PDF

Optimal Surveillance Trajectory Planning for Illegal UAV Detection for Group UAV using Particle Swarm Optimization (불법드론 탐지를 위한 PSO 기반 군집드론 최적화 정찰궤적계획)

  • Lim, WonHo;Jeong, HyoungChan;Hu, Teng;Alamgir, Alamgir;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.382-392
    • /
    • 2020
  • The use of unmanned aerial vehicle (UAV) have been regarded as a promising technique in both military and civilian applications. Nevertheless, due to the lack of relevant and regulations and laws, the misuse of illegal drones poses a serious threat to social security. In this paper, aiming at deriving the three-dimension optimal surveillance trajectories for group monitoring drones, we develop a group trajectory planner based on the particle swarm optimization and updating mechanism. Together, to evaluate the trajectories generated by proposed trajectory planner, we propose a group-objectives fitness function in accordance with energy consumption, flight risk. The simulation results validate that the group trajectories generated by proposed trajectory planner can preferentially visit important areas while obtaining low energy consumption and minimum flying risk value in various practical situations.

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.

Numerical Study of Cyclone Dust Collector (싸이클론 집진기의 수치해석적 연구)

  • 전영남;엄태인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF

Performance analysis of the sounding rockets (과학연구용 로케트의 성능해석)

  • 류장수;김재수;박점주;오범석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.76-81
    • /
    • 1989
  • This paper represents the preliminary design process and the performance of the sounding rockets. At the design phase of the development, we selected rocket configuration according to results of aerodynamic weight and thrust analysis. And the payload-apogee performance of the rockets are determined with the variation of the launch angle and payload weight. Also the performance trajectory was calculated by a particle trajectory simulation. And the parameters which affect the system performance was analyzed.

  • PDF

On the modification of particle dispersion in isotropic turbulence by free rotation of particle (등방성 난류에서 입자의 회전에 의한 분산 특성의 변화)

  • Park, Yong-Nam;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2554-2557
    • /
    • 2008
  • Effect of a particle's spin is investigated numerically by considering the effect of lift occurring due to difference of rotations of a particle and of fluid such as the Saffman lift and Magnus force. These lift forces have been neglected in many previous works on particle-laden turbulence. The trajectory of particles can be changed by the lift forces, resulting in significant modification of the stochastic characteristics of heavy particles. Probability density functions and autocorrelations are examined of velocity, acceleration of solid particle and acceleration of fluid at the position of solid particle. Changes in velocity statistics are negligible but statistics related with acceleration are a little bit changed by particle's rotation. When a laden particle encounters with coherent structures during the motion, the particle's rotation might significantly affects the motion due to intermittently large fluid acceleration near coherent structures.

  • PDF

Simulation of particle filtration by Brownian dynamics (Brownian dynamics 를 이용한 입자 포집 모사)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1922-1927
    • /
    • 2008
  • In the present study, deposition of discrete and small particles, which diameter is less than $1{\mu}m$, on a filter element was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation and Brownian random motion was treated by Brownian dynamics. Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector and deposit layer. Interaction between flow field and deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

  • PDF

3-D Simulation and Experiment on Particle Deflection by Dielectrophoresis (유전-전기영동 기반 입자 편향에 관한 3차원 시뮬레이션 및 실험)

  • Kim, Min-Soo;Kim, Min-Su;Seo, Yeong-Tai;Kim, Jong-Ho;Lee, Yoon-Sik;Lim, Keon-Gyu;Lee, Hyang-Beom;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.146-147
    • /
    • 2007
  • We present full 3-D simulation of dielectrophoretic (DEP) deflection of particle trajectory in micro channel and compare the simulation results with experimental results. In simulation, the particle 3-D movements along x, y and z-axis are simulated precisely, and the streamlines of particles movements and the change of particle height are investigated experimentally. Therefore, the deflection performance is investigated on the designed and fabricated deflection microchip.

  • PDF

Biped Walking of a Humanoid Robot for Argentina Tango

  • Ahn, Doo-Sung
    • Journal of Drive and Control
    • /
    • v.13 no.4
    • /
    • pp.52-58
    • /
    • 2016
  • The mechanical design for biped walking of a humanoid robot doing the Argentina Tango is presented in this paper. Biped walking has long been studied in the area of robotic locomotion. The aim of this paper is to implement an Argentina Tango dancer-like walking motion with a humanoid robot by using a trajectory generation scheme. To that end, this paper uses blending polynominals whose parameters are determined based on PSO (Particle Swarm Optimization) according to conditions that make the most of the Argentina Tango's characteristics. For the stability of biped walking, the ZMP (Zero Moment Point) control method is used. The feasibility of the proposed scheme is evaluated by simulating biped walking with the 3D Simscape robot model. The simulation results show the validity and effectiveness of the proposed method.

Swarm Intelligence-based Optimal Design for Selecting the Kinematic Parameters of a Manipulator According to the Desired Task Space Trajectory (요청한 작업 경로에 따른 매니퓰레이터의 기구학적 변수 선정을 위한 군집 지능 기반 최적 설계)

  • Lee, Joonwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.504-510
    • /
    • 2016
  • Robots are widely utilized in many fields, and various demands need customized robots. This study proposes an optimal design method based on swarm intelligence for selecting the kinematic parameter of a manipulator according to the task space trajectory desired by the user. The optimal design method is dealt with herein as an optimization problem. This study is based on swarm intelligence-based optimization algorithms (i.e., ant colony optimization (ACO) and particle swarm optimization algorithms) to determine the optimal kinematic parameters of the manipulator. The former is used to select the optimal kinematic parameter values, whereas the latter is utilized to solve the inverse kinematic problem when the ACO determines the parameter values. This study solves a design problem with the PUMA 560 when the desired task space trajectory is given and discusses its results in the simulation part to verify the performance of the proposed design.