• Title/Summary/Keyword: particle swarm optimization algorithm

Search Result 461, Processing Time 0.02 seconds

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

Particle Swarm Optimization based on Vector Gaussian Learning

  • Zhao, Jia;Lv, Li;Wang, Hui;Sun, Hui;Wu, Runxiu;Nie, Jugen;Xie, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2038-2057
    • /
    • 2017
  • Gaussian learning is a new technology in the computational intelligence area. However, this technology weakens the learning ability of a particle swarm and achieves a lack of diversity. Thus, this paper proposes a vector Gaussian learning strategy and presents an effective approach, named particle swarm optimization based on vector Gaussian learning. The experiments show that the algorithm is more close to the optimal solution and the better search efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian learning to generate the Gaussian solution of a swarm's optimal location, increases the learning ability of the swarm's optimal location, and maintains the diversity of the swarm. The method divides the states into normal and premature states by analyzing the state threshold of the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark functions to verify the performance of the new approach. The results demonstrate promising performance of the new method in terms of convergence velocity and precision, with an improved ability to escape from a local optimum.

A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark

  • Fan, Debin;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5972-5989
    • /
    • 2019
  • With the onset of the big data age, data is growing exponentially, and the issue of how to optimize large-scale data processing is especially significant. Large-scale global optimization (LSGO) is a research topic with great interest in academia and industry. Spark is a popular cloud computing framework that can cluster large-scale data, and it can effectively support the functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution (DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel algorithm, in which the RDD and island models are employed. The island model is used to divide the global population into several subpopulations, which are applied to reduce the computational time by corresponding to RDD's partitions. To preserve population diversity and avoid premature convergence, the evolutionary strategy of DE is integrated into SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm obtains better optimization performance through experimental results.

A study on analysis of particle swarm optimization algorithm for the optimum design of rectenna for wireless power transmission (무선전력전송용 렉테나 최적 설계를 위한 PSO 알고리즘 분석 연구)

  • Kim, Koon-Tae;Nam, Yeong-Bin;Oh, Seung-Hun;Lee, Jung-Hyeok;Kang, Seong-In;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • In this paper, the particle swarm optimization (PSO) algorithm is adopted to design a modified ring-slot type patch rectenna with a resonance frequency of 2.45GHz. In order to accomplish minimization of dimensions and circular polarization (CP) and harmonic suppression, axial direction slits and side-cuts are added to the patch of the ring. The PSO manipulated this kind of multi-dimensional problem very well, and as a result, the designed rectenna shows a desirable performance of return loss of 21.36dB and axial ratio of 2.92dB at the frequency of 2.45GHz with compact sizing.

  • PDF

Generating unit Maintenance Scheduling based on PSO Algorithm (PSO알고리즘에 기초한 발전기 보수정지)

  • Park, Young-Soo;Kim, Jin-Ho;Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.222-224
    • /
    • 2006
  • This paper addresses a particle swarm optimization-based approach for solving a generating unit maintenance scheduling problem(GMS) with some constraints. We focus on the power system reliability such as reserve ratio better than cost function as the objective function of GMS problem. It is shown that particle swarm optimization-based method is effective in obtaining feasible schedules such as GMS problem related to power system planning and operation. In this paper, we find the optimal solution of the GMS problem within a specific time horizon using particle swarm optimization algorithm. Simple case study with 16-generators system is applicable to the GMS problem. From the result, we can conclude that PSO is enough to look for the optimal solution properly in the generating unit maintenance scheduling problem.

  • PDF

(Visualization Tool of searching process of Particle Swarm Optimization) (PSO(Particle Swarm Optinization)탐색과정의 가시화 툴)

  • 유명련;김현철
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.35-41
    • /
    • 2002
  • To solve the large scale optimization problem approximately, various approaches have been introduced. They are mainly based on recent research advancement of simulations for evolutions, flocking, annealing, and interactions among organisms on artificial environments. The typical ones are simulated annealing(SA), artificial neural network(ANN), genetic algorithms(GA), tabu search(TS), etc. Recently the particle swarm optimization(PSO) has been introduced. The PSO simulates the process of birds flocking or fish schooling for food, as with the information of each agent Is share by other agents. The PSO technique has been applied to various optimization problems of which variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process particle swarm optimization(PSO) algorithm. The proposed tool is effective for understanding the searching process of PSO method and educational for students.

  • PDF

Heterogeneous Fleet Vehicle Routing Problem with Customer Restriction using Hybrid Particle Swarm Optimization (Hybrid-PSO 해법을 이용한 수요지 제한이 있는 다용량 차량경로문제)

  • Lee, Sang-Heon;Hwang, Sun-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.2
    • /
    • pp.150-159
    • /
    • 2009
  • The heterogeneous fleet vehicle routing problem(HVRP) is a variant of the classical vehicle routing problem in which customers are served by a heterogeneous fleet of vehicles with various capacities, fixed costs and variable costs. We propose a new conceptual HVRPCR(HVRP with customer restriction) model including additional customer restrictions in HVRP. In this paper, we develop hybrid particle swarm optimization(HPSO) algorithm with 2-opt and node exchange technique for HVRP. The solution representation is a n-dimensional particle for HVRP with N customers. The decoding method for this representation starts with the transformation of particle into a priority list of customer to enter route and limit of vehicle to serve each customer. The vehicle routes are then constructed based on the customer priority list and limit of vehicle to serve. The proposed algorithm is tested using 8 benchmark problems and it consistently produces high-quality solutions, including new best solutions. The numerical results show that the proposed algorithm is robust and efficient.

Optimization Method of Knapsack Problem Based on BPSO-SA in Logistics Distribution

  • Zhang, Yan;Wu, Tengyu;Ding, Xiaoyue
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.665-676
    • /
    • 2022
  • In modern logistics, the effective use of the vehicle volume and loading capacity will reduce the logistic cost. Many heuristic algorithms can solve this knapsack problem, but lots of these algorithms have a drawback, that is, they often fall into locally optimal solutions. A fusion optimization method based on simulated annealing algorithm (SA) and binary particle swarm optimization algorithm (BPSO) is proposed in the paper. We establish a logistics knapsack model of the fusion optimization algorithm. Then, a new model of express logistics simulation system is used for comparing three algorithms. The experiment verifies the effectiveness of the algorithm proposed in this paper. The experimental results show that the use of BPSO-SA algorithm can improve the utilization rate and the load rate of logistics distribution vehicles. So, the number of vehicles used for distribution and the average driving distance will be reduced. The purposes of the logistics knapsack problem optimization are achieved.

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

PAPR Reduction of an OFDM Signal by use of PTS scheme with MG-PSO Algorithm (MG-PSO 알고리즘을 적용한 PTS 기법에 의한 OFDM 신호의 PAPR 감소)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OPDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PARR(Peak-to-Average Power Ratio). PTS(Partial Transmit Sequence) scheme can reduce the PAPR by dividing OFDM signal into subblocks and then multiplying the phase weighting factors to each subblocks, but computational complexity for selecting of phase weighting factors increases exponentially with the number of subblocks. Therefore, in this paper, MG-PSO(Modified Greedy algorithm-Particle Swarm Optimization) algorithm that combines modified greedy algorithm and PSO(Particle Swarm Optimization) algorithm is proposed to use for the phase control method in PTS scheme. This method can solve the computational complexity and guarantee to reduce PAPR. We analyzed the performance of the PAPR reduction when we applied the proposed method to telecommunication systems.