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Abstract 
 

Gaussian learning is a new technology in the computational intelligence area. However, this 
technology weakens the learning ability of a particle swarm and achieves a lack of diversity. 
Thus, this paper proposes a vector Gaussian learning strategy and presents an effective 
approach, named particle swarm optimization based on vector Gaussian learning. The 
experiments show that the algorithm is more close to the optimal solution and the better search 
efficiency after we use vector Gaussian learning strategy. The strategy adopts vector Gaussian 
learning to generate the Gaussian solution of a swarm’s optimal location, increases the 
learning ability of the swarm’s optimal location, and maintains the diversity of the swarm. The 
method divides the states into normal and premature states by analyzing the state threshold of 
the swarm. If the swarm is in the premature category, the algorithm adopts an inertia weight 
strategy that decreases linearly in addition to vector Gaussian learning; otherwise, it uses a 
fixed inertia weight strategy. Experiments are conducted on eight well-known benchmark 
functions to verify the performance of the new approach. The results demonstrate promising 
performance of the new method in terms of convergence velocity and precision, with an 
improved ability to escape from a local optimum. 
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1. Introduction 

Particle swarm optimization (PSO) [1] is a swarm intelligence algorithm that emulates the 
behavior of birds of prey and was originally presented by Kennedy and Eberhart. The 
simplicity of the technique, the fact that it only requires a few parameters, and its easy 
implementation have encouraged researchers to apply PSO to many research areas, such as to 
solve power system load flow problems [2], wireless sensor networks[3], multi-objective 
problems[4], and image processing [5,6]. 

The disadvantage of PSO is that it easily converges to a local optimum and has the problem 
of premature and slow convergence velocity. Various researchers improved the standard PSO 
algorithm to enhance its performance. Han et al. [7] used an example set of multiple global 
best particles to update the positions of the particles and presented example-based learning 
particle swarm optimization (ELPSO). Beheshti et al. [8] developed centripetal accelerated 
particle swarm optimization (CAPSO), inspired by Newton's law of motion. Particle swarm 
optimization with an aging leader and challengers (ALC-PSO) [9] was introduced by Chen et 
al. Zhang et al.[10] proposed an adaptive bare-bones particle swarm optimization algorithm 
(ABBPSO), in which each particle had its own disturbance value and the value was used to 
adaptively decide the convergence degree of the particle and the diversity of the swarm. The 
swarm's evolving solution is represented by the best solution; however, this best solution often 
limits the search area. To solve the problem, Wang et al. [11] proposed a dynamic tournament 
topology strategy to improve PSO. Cheng et al. [12] introduced social learning mechanisms 
into PSO to develop social learning PSO (SL-PSO). In order to improve the convergence and 
diversity, Yang et al. proposed a multi-objective PSO algorithm based on the interaction of 
multi-level information(MLII-MOPSO) [13], in which the optimization is divided into the 
standard particle optimization layer, the particle evolution and learning layer, and the archive 
information exchange layer. Considering a fractional calculus approach, Couceiro and 
Sivasundaram provided a novel fractional PSO (FPSO) [14]. Although the above-mentioned 
improved PSO variants can improve the performance, an improved strategy has proven 
difficult to realize. 

Gaussian learning, a new technology in the computational intelligence area, adds a random 
disturbance term obeying Gaussian distribution to the individuals and generates Gaussian 
solutions, after which it chooses an improved solution from among the Gaussian solutions as 
the next generation individual. Gaussian learning has been applied to PSO [15], the harmony 
search algorithm [16], artificial bee colony algorithm [17, 18], and the bacterial foraging 
optimization algorithm [19]. However, all dimensions of the particles use Gaussian learning, 
which means that the effect of the technique is not strong. In addition, due to the use of the 
same learning strategy, the nature of the particle is such that convergence becomes easy, the 
population diversity is reduced, and the learning effect is sub-optimal.  

Our approach to solving the above-mentioned problems is to propose PSO based on vector 
Gaussian learning (VGL-PSO). It can generate the vector Gaussian solution by using a vector 
Gaussian learning strategy, which, rather than being applied to all particles, is only applied to 
elite particles. In the process of learning, this strategy maintains the swarm diversity. If the 
algorithm converges prematurely, it can adjust the inertia weight adaptively, use the vector 
Gaussian learning strategy to escape from a local optimum, and enhance local exploitation. 
Experiments show that VGL-PSO, compared with other algorithms, has fast convergence 
velocity, and a strong ability to escape from a local optimum. 
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We organize the remainder of this paper as follows. We provide a simple introduction of 
PSO in Section 2. The details of VGL-PSO are described in Section 3. The effectiveness of the 
proposed method is revealed by numerous experiments in Section 4. Finally, we summarize 
the paper. 

2. Particle Swarm Optimization 
In PSO, the number and dimensions of aparticle are N and M , respectively. 

1 2( , , , )i i i iMX x x x=  and 1 2( , , , )i i i iMV v v v=   represent the location and velocity of 
the thi ( i 1,2,...,N= ) particle, respectively. 

 For the thk iteration, the location and velocity of particle i  are updated as follows. 
 

        k k -1 k
im im imx x v= +                                               (1)  

 
1 1* * * * *k k -1 k k -1 k k -1

im im 1 1 im im 2 2 m imv w v c r (pBest x ) c r (gBest x )− −= + − + −                (2)  
 

where m = 1,2,...,M , w  isthe inertia weightof which the function is to balance the ability to 
perform local and global search, 1c  and 2c represent theacceleration factors, and 1r and 2r  are 
random numbers between 0 and 1. 1k

mgBest − is the optical location of the swarm at the 
( 1)thk − iteration, 1k

impBest −  is the best location of the thi individual at the ( 1)thk −  iteration. 

3. Particle swarm optimization based on vector Gaussian learning 

3.1 Vector Gaussian learning strategy 
Definition 1---Gaussian Solution (GS): Given a point in the M  dimensions as a candidate 
solution 1 2( , , , )i i i iMX x x x=  , the corresponding Gaussian solution is defined as follows.  
 

2
ij ijx x Gauss_random( , )µ σ= +*                                (3)  

 
where, ijx*  is the new location of the thi individual at the thj dimension after Gaussian learning, 

ijx  is the previous location of the thi individual at the thj  dimension, 2Gauss_random( , )µ σ  is a 
Gaussian random function, and µ and 2σ  are the mean and variance, respectively. 

The optimal location of the swarm, namely, the location of an elite particle, is the leader and 
is used as learning example for the other particles and the elite particle itself has no learning 
example. If the elite particle converges to a local optimum, the algorithm is considered to have 
converged prematurely. An individual particle learns from the advantages and disadvantages 
of other particles, which do not have a strong learning ability [20]. Therefore, we introduce 
vector Gaussian learning, which can balance the global exploration and local exploitation 
ability. The Gaussian learning dimension of an elite particle decreases linearly with the 
evolution. In the early stage of evolution, we select a larger dimension space to study, enhance 
the ability to explore the algorithm, and improve the probability of elite particles to search for 
the global optimal position. This algorithm requires smaller exploration ability and larger 
development ability with each iterative cycle, especially in the later stages of evolution. One or 
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a few dimensions converge to a local optimum, and the algorithm selects a smaller dimension 
to learn in the later stage of the iteration. As the other dimensions of information remain the 
same, the strategy can retain as much advantageous information as possible, enable the 
algorithm to escape from a local optimum and improve the accuracy of the solution. 
Definition 2---Vector Gaussian Solution (VGS) --- Given an elite particle in the M  
dimensions as gBest , the corresponding vector Gaussian solution gBest∗ is defined as follows. 
where, ijx*  is the new location of the thi individual at the thj  dimension after Gaussian learning, 

ijx  is the old location of the thi individual at the thj  dimension, 2Gauss_random( , )µ σ  is a 
Gaussian random function, µ  and 2σ  are the mean and variance, respectively. 

The optimal location of swarm, namely, the location of elite particle, is the leader and 
learning example of other particles and the elite particle itself has no learning example. If the 
elite particle falls into local optimum, the algorithm will be premature. Individual learns from 
the advantages and disadvantages of other particles, whose learning is not strong [20]. 
Therefore, we introduce the vector Gaussian learning, which can balance global exploration 
and local exploitation ability. The Gaussian learning dimension of the elite particle is linearly 
decreasing with the evolution. In the early stage of evolution, we select the larger dimension 
space to study, enhance the ability to explore the algorithm, and improve the probability of 
searching the global optimal position of elite particles. Algorithm requires smaller exploration 
ability and larger development ability with the iteration, especially in the later stage of 
evolution. One or a few dimensions fall into local optimum, and algorithm selects a smaller 
dimension to learn in later stage, other dimensions of information remains the same, so it can 
retain the advantage information as most as possible, help the algorithm to escape from local 
optimum and improve the accuracy of the solution. 
Definition 2---Vector Gaussian Solution (VGS) --- Given a elite particle in the M  dimensions 
as gBest , the corresponding vector Gaussian solution gBest∗  is defined as follows.  

 
((1.0 *1.0 / )* )+1num Int i iterNum M= −                      (4)  

 
()%m rand M=                                          (5)  

 
2

m mgBest gBest Gauss_random( , )µ σ∗ = +                     (6)  
 

where, M is the dimension of the particle; i and iterNum  represent the current iteration 
number and maximum iteration number, respectively; num is the dimension of vector Gaussian 
learning(as the number of iterative cycles increases, the dimension of learning becomes 
increasingly smaller, until it becomes one dimension); ()Int is an integral function; 

(0 1)m m M≤ < −  is a random number, which means the thm dimension; 2Gauss_random( , )µ σ is 
a Gaussian random function; mgBest represents the location information of the elite particle in 
the thm dimension. 

In order to verify whether gBest∗  is a more optimal solution than gBest , we choose two 
unimodal functions (Sphere and Schwefel’s P2.22) and multimodal functions (Rastrigin and 
Noncontinuous Rastrigin) to test. PSO is used to calculate the test functions, for which two 
different operations are used: the first uses the vector Gaussian learning strategy, and the other 
does not use any learning strategies in the optimal position of the population. The influence of 
the vector Gaussian learning strategy on the algorithm is demonstrated by randomly choosing 
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one dimension to display in the optimal position of the population. Fig. 1 and 2 display the 
influence of the Gaussian learning strategy on the unimodal and multimodal functions, 
respectively. The horizontal and vertical axes represent the number of iterative cycles and the 
information of the optimal location of the population in one dimension, respectively. 

Vector Gaussian learning has a certain influence on the performance of the algorithm on the 
unimodal functions in Fig. 1. In the first 100 cycles of the iteration, the location dimension 
information of the particle is characterized by a small amplitude and slow frequency. As the 
number of iterative cycles increases, the influence of the vector Gaussian learning strategy 
diminishes, and the advantage of the vector Gaussian learning is not obvious after the 100th 
cycle, especially. Compared with unimodal functions, the influence on multimodal functions 
is greater in Fig. 2. As shown in Fig. 2 (a), regardless as to whether we adopt vector Gaussian 
learning, the dimensional information of a particle experiences repeated shocks during the first 
25 iterations. The dimensional information that uses vector Gaussian learning gradually 
becomes closer in the vicinity of the optimum; however, without using the learning strategies, 
the dimension information of the particle remains unaffected by arbitrary shock. Without 
vector Gaussian learning, the dimension information of a particle is located near the optimum 
between 40 and 60 cycles and escapes from the optimum after the 60th iterative cycle. Fig. 2 (b) 
shows that, without vector Gaussian learning the particles converges to the local optimum and 
is unable to escape from it within 20 iterative cycles. In contrast, a particle with vector 
Gaussian learning found the optimal location after fewer iterative cycles. This comparative 
analysis enables us to conclude that the use of the vector Gaussian learning strategy makes it 
easier for the algorithm to approach the optimal solution and the search efficiency is higher 
than that of particles without the vector Gaussian learning strategy. Therefore, the vector 
Gaussian learning strategy can broaden the active region of the group, improve the diversity, 
and avoid local optimization. 
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 (b)Schwefel’s P2.22 function 

Fig. 1. Dimension information change curve on unimodal functions 
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 (b)Noncontinuous Rastrigin function 

Fig. 2. Dimension information change curve on multimodal functions 

3.2 Equation of VGL-PSO 
Balancing global exploration and the local exploitation ability requires us to dynamically 
adjust the variance of vector Gaussian learning, i.e., the greater the value of 2σ , the greater the 
search space and the stronger the global exploration ability in the early stage of evolution. The 
smaller the value of 2σ , the smaller the search space and the stronger the local exploitation 
ability in the later stage of evolution.  

The dimension of vector Gaussian learning is (1 )num num M≤ ≤ , and the chosen values of 
the dimensions are 1 2, , , numj j j , respectively, 11 j≤  and numj M≤ . The definition of the 
variance adjustment strategy is as follows. 

 

1 2min min( , , )
numj j jgBest gBest gBest gBest=                             (7)  

 
2

min 3*gBest rσ =                                                        (8)  
 

where, min( )  is the minimum function, 3r  is a random number between 0 and 0.5. 
Meanwhile, we also adjust the inertia weight w . If the algorithm converges prematurely, 

w decreases with an increase in the number of iterative cycles of the algorithm; otherwise, the 
value of w is kept constant. 

 
0.5 ,

1.2 (1.2 0.02)* / ,
tag limit

w
i iterNum otherwise

≤
=  − −

                                    (9)  

 
where, w  is an inertia weight, tag signifies the number of optimal locations of the population 
that are not updated, and limit represents the threshold of premature state. 
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3.3 Steps of VGL-PSO 

1) Initialize the parameters, including 1c ， 2c ， w ， tag ，and limit . 
2) Calculate and evaluate the fitness value. 
3) If tag limit≤ , we regard the evolution state as a normal state, proceed to step (4); 

otherwise, regard it as a premature state, proceed to step (5). 
4) Adopt the fixed inertia weight, update velocity and location by formula (1) and (2), and 

update the individual optimal location and global optimum information. Judge whether the 
global optimum is updated; if updated, set 0tag = , otherwise, tag + +  then proceed to step (6). 

5) Use vector Gaussian learning for elite particles by formula (4), (5), (6), (7) and (8), and 
update particle by (9), (1) and (2); meanwhile, update the optimal location of individual and 
global optima. Judge whether the global optimum is updated, if updated, set 0tag = , otherwise, 
tag + + , then proceed to step (6). 

6) If the algorithm satisfies the ending condition, output the global optimum GBest  and 
fitness value; otherwise, please return to step (3) and continue. 

4. Experiments 

4.1 Benchmark Functions 
The performance of VGL-PSO was verified by selecting eight benchmark functions as follows, 
where 1 4~f f  are unimodal functions with only one extreme point in the fixed search range to 
test the convergence velocity and precision, and functions 5 8~f f are multimodal functions 
with many extreme points to adopt to verify the global search ability and the ability to escape 
from a local optimum. These functions are shown as follows. 

1) Sphere function (value space：[-100,100]M , optimum：0) 
M

2
1 i

i 1
f (x) x

=

= ∑  

2) Schwefel’s P2.22 function (value space：[-10,10]M, optimum：0) 

1 1

MM

2 i i
i i

f (x) | x | | x |
= =

= +∑ ∏  

3) Quadric function(value space：[-100,100]M, optimum：0) 

1 1

M i
2

3 j
i j

f (x) ( x )
= =

= ∑ ∑  

4) Quadric Noise function (value space：[-1.28,1.28]D, optimum：0）： 
4

4
1

( ) [0,1)
D

i
i

f x i x random
=

= ⋅ +∑  

5) Rastrigin function (value space:[-5.12,5.12]D，optimum:0) 
2

5
1

( ) [ 10cos(2 ) 10]
D

i i
i

f x x xπ
=

= − +∑  

6) Noncontinuous Rastrigin function (value space:[-5.12,5.12]D，optimum:0) 
2

6
1

| | 0.5
( ) [ 10cos(2 ) 10]

(2 ) / 2 | | 0.5

D
i i

i i i
i i i

x x
f x y y where y

round x x
π

=

<
= − + =  ≥
∑  

7) Ackley function (value space:[-32,32]D, optimum:0) 
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2
7

1 1
( ) 20exp( 0.2 1/ ) exp(1/ cos 2 ) 20

D D

i i
i i

f x D x D x eπ
= =

= − − − + +∑ ∑  

8) Generalized Penalized function (value space: [-50,50]D，optimum: 0) 
12 2 22( ) {10sin ( ) ( 1) [1 10sin ( )] ( 1) } ( ,10,100,4)8 1 11 1

( ) ,
11 ( 1) ( , , , ) 0,4

( ) ,

D

D D
f x y y y y u xi iiD i i

mk x a x ai i
where y x u x a k m a x ai i i i

mk x a x ai i

π π π








−
= + − + + − +∑ ∑+= =

− >
= + + = − ≤ ≤

− − <−

 

4.2 Judgment of evolution state 
The proposed algorithm judges the current evolution state according to the value of limit , 
adjusts the inertia weight adaptively, and chooses a different learning strategy according to the 
current state. Thus, the value of limit  is important for the performance of the algorithm. If 
limit is too large, then the particle cannot escape from the local optimum; if it is too small, the 
particle is forced to converge to the local optimum, which affects the learning of the particle. 
Therefore, we choose different values for limit , and calculate the average optimal fitness value 
of eight classical test functions for 30 dimensions with 20 particles. The curves of the average 
optimal fitness values under different limit conditions are as follows. 
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Fig. 3. Curves of test functions with different limit 
 

In addition to the Noise Quadric function, the average optimal fitness values of the other 
three functions are significantly different with the change of limit from Fig. 3 (a). When the 
value of the limit is between 50 and 150, the logarithm of the average optimal fitness increases 
with an increase in the limit, and the convergence precision of the algorithm gradually 
decrease. When the value of the limit is greater than 150, the curve of the function exhibits 
almost no change, and the convergence precision of the algorithm has no obvious change. For 
the multimodal functions, only two functions are sensitive to changes in the limit. There is no 
obvious change in the average optimal fitness of the function when the limit is between 50 and 
100.An increase in the value of the limit gradually reduces the average optimal fitness value of 
the function. The change curve of the function is smooth, and the convergence precision of the 
algorithm is not changed obviously with 150limit > . In summary, we set limit to be 50 to 
balance the performance of unimodal and multimodal functions. 

4.3 Experiments 
The performance of VGL-PSO was verified by comparingVGL-PSO with six classical PSO 
variants, namely FIPS [21], HPSO-TVAC [22], DMS-PSO [23], CLPSO [24], APSO [25], 
and GDPSO [15]. The size N of the swarm is 20, 1 2 2.0c c= = ; the times of evaluation is 
200000, 3 4 1.0c c= = , the number of estimation is 200,000, dimension 30M = , 50limit = . 

 The results of the seven algorithms are presented in Table 1, where “Mean” represents the 
mean of the optimal fitness value and “Std.Dev” signifies the standard deviation by averaging 
over 50 independent experiments. Here “Mean” reflects the precision and “Std.Dev” reflects 
the stability and robustness. 
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Table 1. Results of seven algorithms on 30 dimensional experiments 
Test 

Functions  FIPS HPSO-TVAC DMSPSO CLPSO APSO GDPSO VGL-PSO 

1f  
Mean 3.21e-30 3.38e-41 3.85e-54 1.89e-19 1.45e-150 1.12e-224 5.39e-299 

Std.Dev 3.60e-30 8.50e-41 1.75e-53 1.49e-19 5.73e-150 0 0 

2f  

Mean 1.32e-17 6.90e-23 2.61e-29 1.01e-13 5.15e-84 7.90e-226 5.16e-278 

Std.Dev 7.86e-18 6.89e-23 6.60e-29 6.51e-14 1.44e-83 0.00 0.00 

3f  
Mean 0.77 2.89e-07 47.5 395 1.0e-10 1.12e-01 3.78e-26 

Std.Dev 0.86 2.97e-07 56.4 142 2.13e-10 2.90 1.11e-24 

4f  
Mean 2.55e-03 5.54e-02 1.10e-02 3.92e-03 4.66e-03 5.54e-03 8.96e-04 

Std.Dev 6.25e-04 2.08e-02 3.94e-03 1.14e-03 1.70e-03 3.40e-02 5.02e-03 

5f  
Mean 29.98 2.39 28.1 2.57e-11 5.80e-15 0.00 0.00 

Std.Dev 10.92 3.71 6.42 6.64e-11 1.01e-14 0.00 0.00 

6f  
Mean 35.91 1.83 32.8 0.167 4.14e-16 4.87e-01 0.00 

Std.Dev 9.49 2.65 6.49 0.379 1.45e-15 14.38 0.00 

7f  
Mean 7.69e-15 2.06e-10 8.52e-15 2.01e-12 1.11e-14 3.43e-15 3.43e-15 

Std.Dev 9.33e-16 9.45e-10 1.79e-15 9.22e-13 3.55e-15 6.61e-15 6.26e-15 

8f  
Mean 1.22e-31 7.07e-30 2.05e-32 1.59e-21 3.76e-31 2.33e-31 1.15e-31 

Std.Dev 4.85e-32 4.05e-30 8.12e-33 1.93e-21 1.20e-30 1.78e-30 2.45e-30 

 
As shown in Table 1, we can see that quality and stability of our method is superior to those 

of the other variants. The convergence accuracy of our algorithm is much higher than that of 
the other algorithms on 1 3f f~ . The VGL-PSO algorithm also has a very good performance 
on 5f , 6f  and 7f . Especially, the proposed method can reach the global optimum on the 5f  and 

6f functions, which is difficult to achieve with the optimization algorithm. Although the 
performance of our method is worse than that of GDPSO, there is no significant difference 
between our method and GDPSO through the t test. 

4.4 T test 
We verifiedwhether the difference between VGL-PSO and the other six variants is significant 
by adopting the T test, in whichthe degree of freedom was 30, and the critical value was 1.697. 
If 1.697t > , VGL-PSO outperforms all the other variants, in which case it is marked as “+”; if 

1.697t < − , the performance of VGL-PSO is less accurate than that of the other variants, in 
which case it is marked as “-”; otherwise, VGL-PSO has no significant difference compared 
with the other variants, in which case it is marked as “=”. In addition, “w/t/l” means that 
VGL-PSO wins in w functions, ties in t functions, and loses in l functions, compared with its 
competitors. The T test results of the comparison are presented in Table 2. 
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Table 2. The T test results of six algorithms 

Test 
Functions FIPS HPSO-TVAC DMS-PSO CLPSO APSO GDPSO 

1f  + + = + = = 

2f  + + + + + = 

3f  + + + + + + 

4f  + + + + + + 

5f  + + + + + = 

6f  + + + + = + 

7f  + = + + + = 

8f  = + = + = = 

w/t/l 7/1/0 7/1/0 6/2/0 8/0/0 5/3/0 3/5/0 

 
 

The results in Table 2 indicate that our method outperforms CLPSO on all eight functions, 
whereas VGL-PSO achieves more accurate results than HPSO-TVAC on seven functions. 
VGL-PSO is more effective than DMS-PSO on six functions, whereas DMS-PSO is superior 
on the remaining two functions. APSO outperforms VGL-PSO on three functions, whereas 
VGL-PSO is the most effective on five functions. GDPSO outperforms VGL-PSO on five 
functions, whereas VGL-PSO achieves the most accurate result on the 3f , 4f  and 6f  functions. 
 
 

4.5 Convergence of our method 
The curves of converge performance for the eight test functions over 30 dimensions are shown 
in Fig. 4 and 5. The horizontal and vertical axes represent the evaluation numbers and the 
logarithm of the fitness value, respectively. Fig. 4 and Fig. 5 are the curves of the unimodal 
functions and multimodal functions, respectively. 
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(c) 3f  function 
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Fig. 4. Evolution curves of unimodal functions 
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(a) 5f  function 

0 2 4 6 8 10 12 14 16 18 20
-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

Number of fitness function evaluation    *104

LO
G

10
(F

itn
es

s 
va

lu
e)

 

 

FIPS
HPSO-TVAC
DMS-PSO
CLPSO
APSO
AGPSO

 
 (b) 6f  function 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 11, NO. 4, April 2017                                         2053 

0 2 4 6 8 10 12 14 16 18 20
-16

-14

-12

-10

-8

-6

-4

-2

0

2

Number of fitness function evaluation    *104

LO
G

10
(F

itn
es

s 
va

lu
e)

 

 
FIPS
HPSO-TVAC
DMS-PSO
CLPSO
APSO
AGPSO

    
(c) 7f  function 
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(d) 8f  function 

Fig. 5. Evolution curves of multimodal functions 
 

VGL-PSO with vector Gaussian learning can enhance the ability of the algorithm to escape 
from a local optimum and accelerate the convergence speed, as shown in Fig. 4 and 5. The 
performance of VGL-PSO is superior on unimodal functions, i.e., most notably the evolution 
curves of functions 1f , 2f , and 3f  decrease almost linearly in Fig. 4; for multimodal functions, 
our method performs more accurately than other variants, especially on the 5f  and 6f  
functions. VGL-PSO can find the best location when the number of assessments is 20000; the 
other variants readily converge to a local optimum, resulting in slow or even stagnant 
convergence, as seen in Fig. 5. 
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5. Conclusions 
Particle swarm optimization based on vector Gaussian learning is proposed to overcome the 
limitations of PSO and Gaussian learning strategy. The proposed method uses the threshold 
value limit to judge whether the swarm converges to a local optimum. If the algorithm is found 
to converge toa local optimum, we adopt the inertia weight strategy,which decreases linearly, 
and the vector Gaussian learning strategy, in which case the elite particlesare able to escape 
from the local optimum; otherwise, we adopt the fixed inertia weight strategy. The results 
demonstrate that VGL-PSO outperforms IPS, HPSO-TVAC, DMS-PSO, CLPSO, APSO, and 
GDPSO. The result of the T test shows that the VGL-PSO algorithm performs more accurately 
than the other six variants. Our future workintends focusing on optimizing the vector Gaussian 
learning strategy, adjusting the evolutionary state threshold limit  more reasonably, and 
improving the performance of the algorithm [26-29]. 
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